Fixed Point Theory, Variational Analysis, and Optimization

Fixed Point Theory, Variational Analysis, and Optimization
Author :
Publisher : CRC Press
Total Pages : 370
Release :
ISBN-10 : 9781482222074
ISBN-13 : 1482222078
Rating : 4/5 (74 Downloads)

Synopsis Fixed Point Theory, Variational Analysis, and Optimization by : Saleh Abdullah R. Al-Mezel

Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis—fixed point theory, variational inequalities, and vector optimization—but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions involving differentiable or directionally differentiable functions. This essential reference supplies both an introduction to the field and a guideline to the literature, progressing from basic concepts to the latest developments. Packed with detailed proofs and bibliographies for further reading, the text: Examines Mann-type iterations for nonlinear mappings on some classes of a metric space Outlines recent research in fixed point theory in modular function spaces Discusses key results on the existence of continuous approximations and selections for set-valued maps with an emphasis on the nonconvex case Contains definitions, properties, and characterizations of convex, quasiconvex, and pseudoconvex functions, and of their strict counterparts Discusses variational inequalities and variational-like inequalities and their applications Gives an introduction to multi-objective optimization and optimality conditions Explores multi-objective combinatorial optimization (MOCO) problems, or integer programs with multiple objectives Fixed Point Theory, Variational Analysis, and Optimization is a beneficial resource for the research and study of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics. It provides fundamental knowledge of directional derivatives and monotonicity required in understanding and solving variational inequality problems.

Fixed Point Theory, Variational Analysis, and Optimization

Fixed Point Theory, Variational Analysis, and Optimization
Author :
Publisher : CRC Press
Total Pages : 364
Release :
ISBN-10 : 9781482222081
ISBN-13 : 1482222086
Rating : 4/5 (81 Downloads)

Synopsis Fixed Point Theory, Variational Analysis, and Optimization by : Saleh Abdullah R. Al-Mezel

Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis-fixed point theory, variational inequalities, and vector optimization-but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions invol

Fixed Point Theory, Variational Analysis, and Optimization

Fixed Point Theory, Variational Analysis, and Optimization
Author :
Publisher :
Total Pages : 364
Release :
ISBN-10 : 1306866871
ISBN-13 : 9781306866873
Rating : 4/5 (71 Downloads)

Synopsis Fixed Point Theory, Variational Analysis, and Optimization by : Saleh Abdullah R. Al-Mezel

Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis fixed point theory, variational inequalities, and vector optimization but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions involving differentiable or directionally differentiable functions. This essential reference supplies both an introduction to the field and a guideline to the literature, progressing from basic concepts to the latest developments. Packed with detailed proofs and bibliographies for further reading, the text: Examines Mann-type iterations for nonlinear mappings on some classes of a metric space Outlines recent research in fixed point theory in modular function spaces Discusses key results on the existence of continuous approximations and selections for set-valued maps with an emphasis on the nonconvex case Contains definitions, properties, and characterizations of convex, quasiconvex, and pseudoconvex functions, and of their strict counterparts Discusses variational inequalities and variational-like inequalities and their applications Gives an introduction to multi-objective optimization and optimality conditions Explores multi-objective combinatorial optimization (MOCO) problems, or integer programs with multiple objectives Fixed Point Theory, Variational Analysis, and Optimization is a beneficial resource for the research and study of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics. It provides fundamental knowledge of directional derivatives and monotonicity required in understanding and solving variational inequality problems."

Variational Analysis

Variational Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 747
Release :
ISBN-10 : 9783642024313
ISBN-13 : 3642024319
Rating : 4/5 (13 Downloads)

Synopsis Variational Analysis by : R. Tyrrell Rockafellar

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Fixed Point Theory and Applications

Fixed Point Theory and Applications
Author :
Publisher : Cambridge University Press
Total Pages : 182
Release :
ISBN-10 : 9781139433792
ISBN-13 : 1139433792
Rating : 4/5 (92 Downloads)

Synopsis Fixed Point Theory and Applications by : Ravi P. Agarwal

This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.

Variational Methods in Nonlinear Analysis

Variational Methods in Nonlinear Analysis
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 584
Release :
ISBN-10 : 9783110647457
ISBN-13 : 3110647451
Rating : 4/5 (57 Downloads)

Synopsis Variational Methods in Nonlinear Analysis by : Dimitrios C. Kravvaritis

This well-thought-out book covers the fundamentals of nonlinear analysis, with a particular focus on variational methods and their applications. Starting from preliminaries in functional analysis, it expands in several directions such as Banach spaces, fixed point theory, nonsmooth analysis, minimax theory, variational calculus and inequalities, critical point theory, monotone, maximal monotone and pseudomonotone operators, and evolution problems.

Fixed Point Theory and Best Approximation: The KKM-map Principle

Fixed Point Theory and Best Approximation: The KKM-map Principle
Author :
Publisher : Springer Science & Business Media
Total Pages : 231
Release :
ISBN-10 : 9789401588225
ISBN-13 : 9401588228
Rating : 4/5 (25 Downloads)

Synopsis Fixed Point Theory and Best Approximation: The KKM-map Principle by : S.P. Singh

The aim of this volume is to make available to a large audience recent material in nonlinear functional analysis that has not been covered in book format before. Here, several topics of current and growing interest are systematically presented, such as fixed point theory, best approximation, the KKM-map principle, and results related to optimization theory, variational inequalities and complementarity problems. Illustrations of suitable applications are given, the links between results in various fields of research are highlighted, and an up-to-date bibliography is included to assist readers in further studies. Audience: This book will be of interest to graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations and expansions, convex sets and related geometric topics and game theory.

Nonlinear Analysis

Nonlinear Analysis
Author :
Publisher : Springer
Total Pages : 362
Release :
ISBN-10 : 9788132218838
ISBN-13 : 8132218833
Rating : 4/5 (38 Downloads)

Synopsis Nonlinear Analysis by : Qamrul Hasan Ansari

Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

Nonlinear Analysis and Variational Problems

Nonlinear Analysis and Variational Problems
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 146142481X
ISBN-13 : 9781461424819
Rating : 4/5 (1X Downloads)

Synopsis Nonlinear Analysis and Variational Problems by : Panos M. Pardalos

The chapters in this volume, written by international experts from different fields of mathematics, are devoted to honoring George Isac, a renowned mathematician. These contributions focus on recent developments in complementarity theory, variational principles, stability theory of functional equations, nonsmooth optimization, and several other important topics at the forefront of nonlinear analysis and optimization.

Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Fixed-Point Algorithms for Inverse Problems in Science and Engineering
Author :
Publisher : Springer Science & Business Media
Total Pages : 409
Release :
ISBN-10 : 9781441995698
ISBN-13 : 1441995692
Rating : 4/5 (98 Downloads)

Synopsis Fixed-Point Algorithms for Inverse Problems in Science and Engineering by : Heinz H. Bauschke

"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.