Finite Element Methods for Nonlinear Optical Waveguides

Finite Element Methods for Nonlinear Optical Waveguides
Author :
Publisher : Routledge
Total Pages : 310
Release :
ISBN-10 : 9781351448581
ISBN-13 : 1351448587
Rating : 4/5 (81 Downloads)

Synopsis Finite Element Methods for Nonlinear Optical Waveguides by : Xin-Hua Wang

This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.

Fundamentals of Optical Waveguides

Fundamentals of Optical Waveguides
Author :
Publisher : Elsevier
Total Pages : 578
Release :
ISBN-10 : 9780080455068
ISBN-13 : 0080455069
Rating : 4/5 (68 Downloads)

Synopsis Fundamentals of Optical Waveguides by : Katsunari Okamoto

Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate optical atmospheres. - Exceptional new chapter on Arrayed-Waveguide Grating (AWG) - In-depth discussion of Photonic Crystal Fibers (PCFs) - Thorough explanation of Multimode Interference Devices (MMI) - Full coverage of polarization Mode Dispersion (PMD)

Optical Waveguide Theory by the Finite Element Method

Optical Waveguide Theory by the Finite Element Method
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 9401047138
ISBN-13 : 9789401047135
Rating : 4/5 (38 Downloads)

Synopsis Optical Waveguide Theory by the Finite Element Method by : Masanori Koshiba

Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.

Anisotropic and Nonlinear Optical Waveguides

Anisotropic and Nonlinear Optical Waveguides
Author :
Publisher : Elsevier
Total Pages : 247
Release :
ISBN-10 : 9780444598943
ISBN-13 : 0444598944
Rating : 4/5 (43 Downloads)

Synopsis Anisotropic and Nonlinear Optical Waveguides by : C.G. Someda

Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, and the second with nonlinear behaviour. Nonlinear behaviour in optical waveguides is a topic of current research interest, an effect eagerly being sought in waveguides. The relative importance of nonlinearity versus anisotropy in theoretical papers changes enormously from problem to problem. Many theories can be quite useful and enlightening even though they neglect entirely one of the two aspects. Scientists may find their research work leading them in the near future to deal simultaneously with anisotropy and nonlinearity in order to pursue their own investigations. This book will be of interest to researchers who first need to understand the individual topics, suitably chosen from the two parts of this work, thus providing them with the necessary ingredients to pursue their explorations.

Photonics Modelling and Design

Photonics Modelling and Design
Author :
Publisher : CRC Press
Total Pages : 408
Release :
ISBN-10 : 9781466561274
ISBN-13 : 1466561270
Rating : 4/5 (74 Downloads)

Synopsis Photonics Modelling and Design by : Slawomir Sujecki

Photonics Modeling and Design delivers a concise introduction to the modeling and design of photonic devices. Assuming a general knowledge of photonics and the operating principles of fibre and semiconductor lasers, this book: Describes the analysis of the light propagation in dielectric media Discusses heat diffusion and carrier transport Applies the presented theory to develop fibre and semiconductor laser models Addresses the propagation of short optical pulses in optical fibres Puts all modeling into practical context with examples of devices currently in development or on the market Providing hands-on guidance in the form of MATLAB® scripts, tips, and other downloadable content, Photonics Modeling and Design is written for students and professionals interested in modeling photonic devices either for gaining a deeper understanding of the operation or to optimize the design.

Finite Element Modeling Methods for Photonics

Finite Element Modeling Methods for Photonics
Author :
Publisher : Artech House
Total Pages : 265
Release :
ISBN-10 : 9781608075317
ISBN-13 : 1608075311
Rating : 4/5 (17 Downloads)

Synopsis Finite Element Modeling Methods for Photonics by : B. M. Azizur Rahman

The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astronomy, and sensing, to chemistry, imaging, and biomedical R&D. This book emphasizes practical, problem-solving applications and includes real-world examples to assist readers in understanding how mathematical concepts translate to computer code for finite element-based methods applicable to a range of photonic structures. In addition, this is the perfect support to anyone using the COMSOL Multiphysics© RF Module.

Organic Thin Films for Waveguiding Nonlinear Optics

Organic Thin Films for Waveguiding Nonlinear Optics
Author :
Publisher : CRC Press
Total Pages : 846
Release :
ISBN-10 : 2884490701
ISBN-13 : 9782884490702
Rating : 4/5 (01 Downloads)

Synopsis Organic Thin Films for Waveguiding Nonlinear Optics by : F. Kajzar

First published in 1996. Routledge is an imprint of Taylor & Francis, an informa company.

Japanese Science and Technology, 1983-1984

Japanese Science and Technology, 1983-1984
Author :
Publisher :
Total Pages : 1080
Release :
ISBN-10 : CORNELL:31924004930727
ISBN-13 :
Rating : 4/5 (27 Downloads)

Synopsis Japanese Science and Technology, 1983-1984 by : United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch

Computational Photonic Sensors

Computational Photonic Sensors
Author :
Publisher : Springer
Total Pages : 446
Release :
ISBN-10 : 9783319765563
ISBN-13 : 3319765566
Rating : 4/5 (63 Downloads)

Synopsis Computational Photonic Sensors by : Mohamed Farhat O. Hameed

This book provides a comprehensive overview of the photonic sensing field by covering plasmonics, photonic crystal, and SOI techniques from theory to real sensing applications. A literature review of ultra-sensitive photonic sensors, including their design and application in industry, makes this a self-contained and comprehensive resource for different types of sensors, with high value to the biosensor sector in particular. The book is organized into four parts: Part I covers the basic theory of wave propagation, basic principles of sensing, surface plasmon resonance, and silicon photonics; Part II details the computational modeling techniques for the analysis and prediction of photonic sensors; Part III and Part IV cover the various mechanisms and light matter interaction scenarios behind the design of photonic sensors including photonic crystal fiber sensors and SOI sensors. This book is appropriate for academics and researchers specializing in photonic sensors; graduate students in the early and intermediate stages working in the areas of photonics, sensors, biophysics, and biomedical engineering; and to biomedical, environmental, and chemical engineers.

Computational Photonics

Computational Photonics
Author :
Publisher : John Wiley & Sons
Total Pages : 268
Release :
ISBN-10 : 9781119957508
ISBN-13 : 1119957508
Rating : 4/5 (08 Downloads)

Synopsis Computational Photonics by : Salah Obayya

This book explores the state-of-the art in computational modelling techniques for photonic devices In this book, the author provides a comprehensive coverage of modern numerical modelling techniques for designing photonic devices for use in modern optical telecommunications systems. In addition the book presents the state-of-the-art in computational photonics techniques, covering methods such as full-vectorial finite-element beam propagation, bidirectional beam propagation, complex-envelope alternative direction implicit finite difference time domain, multiresolution time domain, and finite volume time domain. The book guides the reader through the concepts of modelling, analysing, designing and optimising the performance of a wide range of photonic devices by building their own numerical code using these methods. Key Features: Provides a thorough presentation of the state-of-the art in computational modelling techniques for photonics Contains broad coverage of both frequency- and time-domain techniques to suit a wide range of photonic devices Reviews existing commercial software packages for photonics Presents the advantages and disadvantages of the different modelling techniques as well as their suitability for various photonic devices Shows the reader how to model, analyse, design and optimise the performance of a wide range of photonic devices by building their own numerical code using these methods Accompanying website contains the numerical examples representing the numerical techniques in this book, as well as several design examples (http://www.wiley.com/go/obayya_computational) This book will serve as an invaluable reference for researchers, optical telecommunications engineers, engineers in the photonics industry. PhD and MSc students undertaking courses in the areas of photonics and optical telecommunications will also find this book of interest.