Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Author :
Publisher : SIAM
Total Pages : 356
Release :
ISBN-10 : 0898717833
ISBN-13 : 9780898717839
Rating : 4/5 (33 Downloads)

Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Finite Difference Methods,Theory and Applications

Finite Difference Methods,Theory and Applications
Author :
Publisher : Springer
Total Pages : 443
Release :
ISBN-10 : 9783319202396
ISBN-13 : 3319202391
Rating : 4/5 (96 Downloads)

Synopsis Finite Difference Methods,Theory and Applications by : Ivan Dimov

This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Finite Difference Methods, FDM 2014, held in Lozenetz, Bulgaria, in June 2014. The 36 revised full papers were carefully reviewed and selected from 62 submissions. These papers together with 12 invited papers cover topics such as finite difference and combined finite difference methods as well as finite element methods and their various applications in physics, chemistry, biology and finance.

Finite Difference Methods in Financial Engineering

Finite Difference Methods in Financial Engineering
Author :
Publisher : John Wiley & Sons
Total Pages : 452
Release :
ISBN-10 : 9781118856482
ISBN-13 : 1118856481
Rating : 4/5 (82 Downloads)

Synopsis Finite Difference Methods in Financial Engineering by : Daniel J. Duffy

The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.

Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method
Author :
Publisher : Courier Corporation
Total Pages : 290
Release :
ISBN-10 : 9780486131597
ISBN-13 : 0486131599
Rating : 4/5 (97 Downloads)

Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

Difference Equations, Second Edition

Difference Equations, Second Edition
Author :
Publisher : CRC Press
Total Pages : 470
Release :
ISBN-10 : 0442001363
ISBN-13 : 9780442001360
Rating : 4/5 (63 Downloads)

Synopsis Difference Equations, Second Edition by : R Mickens

In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.

Nonstandard Finite Difference Schemes: Methodology And Applications

Nonstandard Finite Difference Schemes: Methodology And Applications
Author :
Publisher : World Scientific
Total Pages : 332
Release :
ISBN-10 : 9789811222559
ISBN-13 : 981122255X
Rating : 4/5 (59 Downloads)

Synopsis Nonstandard Finite Difference Schemes: Methodology And Applications by : Ronald E Mickens

This second edition of Nonstandard Finite Difference Models of Differential Equations provides an update on the progress made in both the theory and application of the NSFD methodology during the past two and a half decades. In addition to discussing details related to the determination of the denominator functions and the nonlocal discrete representations of functions of dependent variables, we include many examples illustrating just how this should be done.Of real value to the reader is the inclusion of a chapter listing many exact difference schemes, and a chapter giving NSFD schemes from the research literature. The book emphasizes the critical roles played by the 'principle of dynamic consistency' and the use of sub-equations for the construction of valid NSFD discretizations of differential equations.

Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods
Author :
Publisher : SIAM
Total Pages : 167
Release :
ISBN-10 : 9780898710236
ISBN-13 : 0898710235
Rating : 4/5 (36 Downloads)

Synopsis Numerical Analysis of Spectral Methods by : David Gottlieb

A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 403
Release :
ISBN-10 : 9783642332876
ISBN-13 : 3642332870
Rating : 4/5 (76 Downloads)

Synopsis The Finite Element Method: Theory, Implementation, and Applications by : Mats G. Larson

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Extended Finite Element Method

Extended Finite Element Method
Author :
Publisher : John Wiley & Sons
Total Pages : 600
Release :
ISBN-10 : 9781118457689
ISBN-13 : 1118457684
Rating : 4/5 (89 Downloads)

Synopsis Extended Finite Element Method by : Amir R. Khoei

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples