Financial Data Analytics

Financial Data Analytics
Author :
Publisher : Springer Nature
Total Pages : 393
Release :
ISBN-10 : 9783030837990
ISBN-13 : 3030837998
Rating : 4/5 (90 Downloads)

Synopsis Financial Data Analytics by : Sinem Derindere Köseoğlu

​This book presents both theory of financial data analytics, as well as comprehensive insights into the application of financial data analytics techniques in real financial world situations. It offers solutions on how to logically analyze the enormous amount of structured and unstructured data generated every moment in the finance sector. This data can be used by companies, organizations, and investors to create strategies, as the finance sector rapidly moves towards data-driven optimization. This book provides an efficient resource, addressing all applications of data analytics in the finance sector. International experts from around the globe cover the most important subjects in finance, including data processing, knowledge management, machine learning models, data modeling, visualization, optimization for financial problems, financial econometrics, financial time series analysis, project management, and decision making. The authors provide empirical evidence as examples of specific topics. By combining both applications and theory, the book offers a holistic approach. Therefore, it is a must-read for researchers and scholars of financial economics and finance, as well as practitioners interested in a better understanding of financial data analytics.

Financial Analytics with R

Financial Analytics with R
Author :
Publisher : Cambridge University Press
Total Pages : 397
Release :
ISBN-10 : 9781107150751
ISBN-13 : 1107150752
Rating : 4/5 (51 Downloads)

Synopsis Financial Analytics with R by : Mark J. Bennett

Financial Analytics with R sharpens readers' skills in time-series, forecasting, portfolio selection, covariance clustering, prediction, and derivative securities.

Financial Statistics and Data Analytics

Financial Statistics and Data Analytics
Author :
Publisher : MDPI
Total Pages : 232
Release :
ISBN-10 : 9783039439751
ISBN-13 : 3039439758
Rating : 4/5 (51 Downloads)

Synopsis Financial Statistics and Data Analytics by : Shuangzhe Li

Modern financial management is largely about risk management, which is increasingly data-driven. The problem is how to extract information from the data overload. It is here that advanced statistical and machine learning techniques can help. Accordingly, finance, statistics, and data analytics go hand in hand. The purpose of this book is to bring the state-of-art research in these three areas to the fore and especially research that juxtaposes these three.

Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition)

Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition)
Author :
Publisher : World Scientific
Total Pages : 512
Release :
ISBN-10 : 9789811251825
ISBN-13 : 9811251827
Rating : 4/5 (25 Downloads)

Synopsis Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition) by : Graham L Giller

This book provides insights into the true nature of financial and economic data, and is a practical guide on how to analyze a variety of data sources. The focus of the book is on finance and economics, but it also illustrates the use of quantitative analysis and data science in many different areas. Lastly, the book includes practical information on how to store and process data and provides a framework for data driven reasoning about the world.The book begins with entertaining tales from Graham Giller's career in finance, starting with speculating in UK government bonds at the Oxford Post Office, accidentally creating a global instant messaging system that went 'viral' before anybody knew what that meant, on being the person who forgot to hit 'enter' to run a hundred-million dollar statistical arbitrage system, what he decoded from his brief time spent with Jim Simons, and giving Michael Bloomberg a tutorial on Granger Causality.The majority of the content is a narrative of analytic work done on financial, economics, and alternative data, structured around both Dr Giller's professional career and some of the things that just interested him. The goal is to stimulate interest in predictive methods, to give accurate characterizations of the true properties of financial, economic and alternative data, and to share what Richard Feynman described as 'The Pleasure of Finding Things Out.'

Financial Statement Analysis

Financial Statement Analysis
Author :
Publisher : John Wiley & Sons
Total Pages : 414
Release :
ISBN-10 : 9780471264606
ISBN-13 : 0471264601
Rating : 4/5 (06 Downloads)

Synopsis Financial Statement Analysis by : Martin S. Fridson

Praise for Financial Statement Analysis A Practitioner's Guide Third Edition "This is an illuminating and insightful tour of financial statements, how they can be used to inform, how they can be used to mislead, and how they can be used to analyze the financial health of a company." -Professor Jay O. Light Harvard Business School "Financial Statement Analysis should be required reading for anyone who puts a dime to work in the securities markets or recommends that others do the same." -Jack L. Rivkin Executive Vice President (retired) Citigroup Investments "Fridson and Alvarez provide a valuable practical guide for understanding, interpreting, and critically assessing financial reports put out by firms. Their discussion of profits-'quality of earnings'-is particularly insightful given the recent spate of reporting problems encountered by firms. I highly recommend their book to anyone interested in getting behind the numbers as a means of predicting future profits and stock prices." -Paul Brown Chair-Department of Accounting Leonard N. Stern School of Business, NYU "Let this book assist in financial awareness and transparency and higher standards of reporting, and accountability to all stakeholders." -Patricia A. Small Treasurer Emeritus, University of California Partner, KCM Investment Advisors "This book is a polished gem covering the analysis of financial statements. It is thorough, skeptical and extremely practical in its review." -Daniel J. Fuss Vice Chairman Loomis, Sayles & Company, LP

Audit Analytics in the Financial Industry

Audit Analytics in the Financial Industry
Author :
Publisher : Emerald Group Publishing
Total Pages : 185
Release :
ISBN-10 : 9781787431737
ISBN-13 : 1787431738
Rating : 4/5 (37 Downloads)

Synopsis Audit Analytics in the Financial Industry by : Jun Dai

Split into six parts, contributors explore ways to integrate Audit Analytics techniques into existing audit programs for the financial industry. Chapters include topics such as fraud risks in the credit card sector, clustering techniques, fraud and anomaly detection, and using Audit Analytics to assess risk in the lawsuit and payment processes.

Big Data Science in Finance

Big Data Science in Finance
Author :
Publisher : John Wiley & Sons
Total Pages : 336
Release :
ISBN-10 : 9781119602972
ISBN-13 : 1119602971
Rating : 4/5 (72 Downloads)

Synopsis Big Data Science in Finance by : Irene Aldridge

Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.

Data Science for Economics and Finance

Data Science for Economics and Finance
Author :
Publisher : Springer Nature
Total Pages : 357
Release :
ISBN-10 : 9783030668914
ISBN-13 : 3030668916
Rating : 4/5 (14 Downloads)

Synopsis Data Science for Economics and Finance by : Sergio Consoli

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.

An Introduction to Analysis of Financial Data with R

An Introduction to Analysis of Financial Data with R
Author :
Publisher : John Wiley & Sons
Total Pages : 388
Release :
ISBN-10 : 9781119013464
ISBN-13 : 1119013461
Rating : 4/5 (64 Downloads)

Synopsis An Introduction to Analysis of Financial Data with R by : Ruey S. Tsay

A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.

Machine Learning and Data Science Blueprints for Finance

Machine Learning and Data Science Blueprints for Finance
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 432
Release :
ISBN-10 : 9781492073000
ISBN-13 : 1492073008
Rating : 4/5 (00 Downloads)

Synopsis Machine Learning and Data Science Blueprints for Finance by : Hariom Tatsat

Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations