Field Effect Transistors, A Comprehensive Overview

Field Effect Transistors, A Comprehensive Overview
Author :
Publisher : John Wiley & Sons
Total Pages : 471
Release :
ISBN-10 : 9781119155492
ISBN-13 : 1119155495
Rating : 4/5 (92 Downloads)

Synopsis Field Effect Transistors, A Comprehensive Overview by : Pouya Valizadeh

This book discusses modern-day Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and future trends of transistor devices. This book provides an overview of Field Effect Transistors (FETs) by discussing the basic principles of FETs and exploring the latest technological developments in the field. It covers and connects a wide spectrum of topics related to semiconductor device physics, physics of transistors, and advanced transistor concepts. This book contains six chapters. Chapter 1 discusses electronic materials and charge. Chapter 2 examines junctions, discusses contacts under thermal-equilibrium, metal-semiconductor contacts, and metal-insulator-semiconductor systems. Chapter 3 covers traditional planar Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). Chapter 4 describes scaling-driving technological variations and novel dimensions of MOSFETs. Chapter 5 analyzes Heterojunction Field Effect Transistors (FETs) and also discusses the challenges and rewards of heteroepitaxy. Finally, Chapter 6 examines FETs at molecular scales. Links the discussion of contemporary transistor devices to physical processes Material has been class-tested in undergraduate and graduate courses on the design of integrated circuit components taught by the author Contains examples and end-of-chapter problems Field Effect Transistors, A Comprehensive Overview: From Basic Concepts to Novel Technologies is a reference for senior undergraduate / graduate students and professional engineers needing insight into physics of operation of modern FETs. Pouya Valizadeh is Associate Professor in the Department of Electrical and Computer Engineering at Concordia University in Quebec, Canada. He received B.S. and M.S. degrees with honors from the University of Tehran and Ph.D. degree from The University of Michigan (Ann Arbor) all in Electrical Engineering in 1997, 1999, and 2005, respectively. Over the past decade, Dr. Valizadeh has taught numerous sections of five different courses covering topics such as semiconductor process technology, semiconductor materials and their properties, advanced solid state devices, transistor design for modern CMOS technology, and high speed transistors.

Field Effect Transistors, A Comprehensive Overview

Field Effect Transistors, A Comprehensive Overview
Author :
Publisher : John Wiley & Sons
Total Pages : 565
Release :
ISBN-10 : 9781119155805
ISBN-13 : 1119155800
Rating : 4/5 (05 Downloads)

Synopsis Field Effect Transistors, A Comprehensive Overview by : Pouya Valizadeh

This book discusses modern-day Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and future trends of transistor devices. This book provides an overview of Field Effect Transistors (FETs) by discussing the basic principles of FETs and exploring the latest technological developments in the field. It covers and connects a wide spectrum of topics related to semiconductor device physics, physics of transistors, and advanced transistor concepts. This book contains six chapters. Chapter 1 discusses electronic materials and charge. Chapter 2 examines junctions, discusses contacts under thermal-equilibrium, metal-semiconductor contacts, and metal-insulator-semiconductor systems. Chapter 3 covers traditional planar Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). Chapter 4 describes scaling-driving technological variations and novel dimensions of MOSFETs. Chapter 5 analyzes Heterojunction Field Effect Transistors (FETs) and also discusses the challenges and rewards of heteroepitaxy. Finally, Chapter 6 examines FETs at molecular scales. Links the discussion of contemporary transistor devices to physical processes Material has been class-tested in undergraduate and graduate courses on the design of integrated circuit components taught by the author Contains examples and end-of-chapter problems Field Effect Transistors, A Comprehensive Overview: From Basic Concepts to Novel Technologies is a reference for senior undergraduate / graduate students and professional engineers needing insight into physics of operation of modern FETs. Pouya Valizadeh is Associate Professor in the Department of Electrical and Computer Engineering at Concordia University in Quebec, Canada. He received B.S. and M.S. degrees with honors from the University of Tehran and Ph.D. degree from The University of Michigan (Ann Arbor) all in Electrical Engineering in 1997, 1999, and 2005, respectively. Over the past decade, Dr. Valizadeh has taught numerous sections of five different courses covering topics such as semiconductor process technology, semiconductor materials and their properties, advanced solid state devices, transistor design for modern CMOS technology, and high speed transistors.

Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors

Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors
Author :
Publisher : Cambridge University Press
Total Pages : 255
Release :
ISBN-10 : 9781107162044
ISBN-13 : 1107162041
Rating : 4/5 (44 Downloads)

Synopsis Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors by : Farzan Jazaeri

A detailed introduction to the design, modeling, and operation of junctionless field effect transistors (FETs), including advantages and limitations.

Junctionless Field-Effect Transistors

Junctionless Field-Effect Transistors
Author :
Publisher : John Wiley & Sons
Total Pages : 496
Release :
ISBN-10 : 9781119523536
ISBN-13 : 1119523532
Rating : 4/5 (36 Downloads)

Synopsis Junctionless Field-Effect Transistors by : Shubham Sahay

A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.

Different Types of Field-Effect Transistors

Different Types of Field-Effect Transistors
Author :
Publisher : BoD – Books on Demand
Total Pages : 194
Release :
ISBN-10 : 9789535131755
ISBN-13 : 9535131753
Rating : 4/5 (55 Downloads)

Synopsis Different Types of Field-Effect Transistors by : Momčilo Pejović

In 1959, Atalla and Kahng at Bell Labs produced the first successful field-effect transistor (FET), which had been long anticipated by other researchers by overcoming the "surface states" that blocked electric fields from penetrating into the semiconductor material. Very quickly, they became the fundamental basis of digital electronic circuits. Up to this point, there are more than 20 different types of field-effect transistors that are incorporated in various applications found in everyday's life. Based on this fact, this book was designed to overview some of the concepts regarding FETs that are currently used as well as some concepts that are still being developed.

Microwave Field-Effect Transistors

Microwave Field-Effect Transistors
Author :
Publisher : IET
Total Pages : 705
Release :
ISBN-10 : 9781884932502
ISBN-13 : 1884932509
Rating : 4/5 (02 Downloads)

Synopsis Microwave Field-Effect Transistors by : Raymond S. Pengelly

The following topics are dealt with: GaAs FET theory-small signal; GaAs FET theory-power; requirements and fabrication of GaAs FETs; design of transistor amplifiers; FET mixers; GaAs FET oscillators; FET and IC packaging; FET circuits; gallium arsenide integrated circuits; and other III-V materials and devices

Tunneling Field Effect Transistor Technology

Tunneling Field Effect Transistor Technology
Author :
Publisher : Springer
Total Pages : 217
Release :
ISBN-10 : 9783319316536
ISBN-13 : 3319316532
Rating : 4/5 (36 Downloads)

Synopsis Tunneling Field Effect Transistor Technology by : Lining Zhang

This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency.

Nanowire Field Effect Transistors: Principles and Applications

Nanowire Field Effect Transistors: Principles and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 292
Release :
ISBN-10 : 9781461481249
ISBN-13 : 1461481244
Rating : 4/5 (49 Downloads)

Synopsis Nanowire Field Effect Transistors: Principles and Applications by : Dae Mann Kim

“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

Organic Field-Effect Transistors

Organic Field-Effect Transistors
Author :
Publisher : CRC Press
Total Pages : 640
Release :
ISBN-10 : 9781420008012
ISBN-13 : 1420008013
Rating : 4/5 (12 Downloads)

Synopsis Organic Field-Effect Transistors by : Zhenan Bao

The remarkable development of organic thin film transistors (OTFTs) has led to their emerging use in active matrix flat-panel displays, radio frequency identification cards, and sensors. Exploring one class of OTFTs, Organic Field-Effect Transistors provides a comprehensive, multidisciplinary survey of the present theory, charge transport studies, synthetic methodology, materials characterization, and current applications of organic field-effect transistors (OFETs). Covering various aspects of OFETs, the book begins with a theoretical description of charge transport in organic semiconductors at the molecular level. It then discusses the current understanding of charge transport in single-crystal devices, small molecules and oligomers, conjugated polymer devices, and charge injection issues in organic transistors. After describing the design rationales and synthetic methodologies used for organic semiconductors and dielectric materials, the book provides an overview of a variety of characterization techniques used to probe interfacial ordering, microstructure, molecular packing, and orientation crucial to device performance. It also describes the different processing techniques for molecules deposited by vacuum and solution, followed by current technological examples that employ OTFTs in their operation. Featuring respected contributors from around the world, this thorough, up-to-date volume presents both the theory behind OFETs and the latest applications of this promising technology.