Statistical Inference, Econometric Analysis and Matrix Algebra

Statistical Inference, Econometric Analysis and Matrix Algebra
Author :
Publisher : Springer Science & Business Media
Total Pages : 438
Release :
ISBN-10 : 9783790821215
ISBN-13 : 3790821217
Rating : 4/5 (15 Downloads)

Synopsis Statistical Inference, Econometric Analysis and Matrix Algebra by : Bernhard Schipp

This Festschrift is dedicated to Götz Trenkler on the occasion of his 65th birthday. As can be seen from the long list of contributions, Götz has had and still has an enormous range of interests, and colleagues to share these interests with. He is a leading expert in linear models with a particular focus on matrix algebra in its relation to statistics. He has published in almost all major statistics and matrix theory journals. His research activities also include other areas (like nonparametrics, statistics and sports, combination of forecasts and magic squares, just to mention afew). Götz Trenkler was born in Dresden in 1943. After his school years in East G- many and West-Berlin, he obtained a Diploma in Mathematics from Free University of Berlin (1970), where he also discovered his interest in Mathematical Statistics. In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating fu- tion of probability measures. He then moved on to the University of Hannover to become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that would become his predominant ?eld of research in the years to come.

Matrix Tricks for Linear Statistical Models

Matrix Tricks for Linear Statistical Models
Author :
Publisher : Springer Science & Business Media
Total Pages : 504
Release :
ISBN-10 : 9783642104732
ISBN-13 : 3642104738
Rating : 4/5 (32 Downloads)

Synopsis Matrix Tricks for Linear Statistical Models by : Simo Puntanen

In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple “tricks” which simplify and clarify the treatment of a problem—both for the student and for the professor. Of course, the concept of a trick is not uniquely defined—by a trick we simply mean here a useful important handy result. In this book we collect together our Top Twenty favourite matrix tricks for linear statistical models.

Robust and Multivariate Statistical Methods

Robust and Multivariate Statistical Methods
Author :
Publisher : Springer Nature
Total Pages : 500
Release :
ISBN-10 : 9783031226878
ISBN-13 : 3031226879
Rating : 4/5 (78 Downloads)

Synopsis Robust and Multivariate Statistical Methods by : Mengxi Yi

This book presents recent developments in multivariate and robust statistical methods. Featuring contributions by leading experts in the field it covers various topics, including multivariate and high-dimensional methods, time series, graphical models, robust estimation, supervised learning and normal extremes. It will appeal to statistics and data science researchers, PhD students and practitioners who are interested in modern multivariate and robust statistics. The book is dedicated to David E. Tyler on the occasion of his pending retirement and also includes a review contribution on the popular Tyler’s shape matrix.

Modern Nonparametric, Robust and Multivariate Methods

Modern Nonparametric, Robust and Multivariate Methods
Author :
Publisher : Springer
Total Pages : 513
Release :
ISBN-10 : 9783319224046
ISBN-13 : 3319224042
Rating : 4/5 (46 Downloads)

Synopsis Modern Nonparametric, Robust and Multivariate Methods by : Klaus Nordhausen

Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.

Handbook of Statistical Methods for Case-Control Studies

Handbook of Statistical Methods for Case-Control Studies
Author :
Publisher : CRC Press
Total Pages : 612
Release :
ISBN-10 : 9781351650120
ISBN-13 : 1351650122
Rating : 4/5 (20 Downloads)

Synopsis Handbook of Statistical Methods for Case-Control Studies by : Ørnulf Borgan

Handbook of Statistical Methods for Case-Control Studies is written by leading researchers in the field. It provides an in-depth treatment of up-to-date and currently developing statistical methods for the design and analysis of case-control studies, as well as a review of classical principles and methods. The handbook is designed to serve as a reference text for biostatisticians and quantitatively-oriented epidemiologists who are working on the design and analysis of case-control studies or on related statistical methods research. Though not specifically intended as a textbook, it may also be used as a backup reference text for graduate level courses. Book Sections Classical designs and causal inference, measurement error, power, and small-sample inference Designs that use full-cohort information Time-to-event data Genetic epidemiology About the Editors Ørnulf Borgan is Professor of Statistics, University of Oslo. His book with Andersen, Gill and Keiding on counting processes in survival analysis is a world classic. Norman E. Breslow was, at the time of his death, Professor Emeritus in Biostatistics, University of Washington. For decades, his book with Nick Day has been the authoritative text on case-control methodology. Nilanjan Chatterjee is Bloomberg Distinguished Professor, Johns Hopkins University. He leads a broad research program in statistical methods for modern large scale biomedical studies. Mitchell H. Gail is a Senior Investigator at the National Cancer Institute. His research includes modeling absolute risk of disease, intervention trials, and statistical methods for epidemiology. Alastair Scott was, at the time of his death, Professor Emeritus of Statistics, University of Auckland. He was a major contributor to using survey sampling methods for analyzing case-control data. Chris J. Wild is Professor of Statistics, University of Auckland. His research includes nonlinear regression and methods for fitting models to response-selective data.

Multivariate Nonparametric Methods with R

Multivariate Nonparametric Methods with R
Author :
Publisher : Springer Science & Business Media
Total Pages : 239
Release :
ISBN-10 : 9781441904683
ISBN-13 : 1441904689
Rating : 4/5 (83 Downloads)

Synopsis Multivariate Nonparametric Methods with R by : Hannu Oja

This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for computation of the procedures. This monograph provides an up-to-date overview of the theory of multivariate nonparametric methods based on spatial signs and ranks. The classical book by Puri and Sen (1971) uses marginal signs and ranks and different type of L1 norm. The book may serve as a textbook and a general reference for the latest developments in the area. Readers are assumed to have a good knowledge of basic statistical theory as well as matrix theory. Hannu Oja is an academy professor and a professor in biometry in the University of Tampere. He has authored and coauthored numerous research articles in multivariate nonparametrical and robust methods as well as in biostatistics.

Selected Works of David Brillinger

Selected Works of David Brillinger
Author :
Publisher : Springer Science & Business Media
Total Pages : 663
Release :
ISBN-10 : 9781461413448
ISBN-13 : 1461413443
Rating : 4/5 (48 Downloads)

Synopsis Selected Works of David Brillinger by : Peter Guttorp

This volume contains 30 of David Brillinger's most influential papers. He is an eminent statistical scientist, having published broadly in time series and point process analysis, seismology, neurophysiology, and population biology. Each of these areas are well represented in the book. The volume has been divided into four parts, each with comments by one of Dr. Brillinger's former PhD students. His more theoretical papers have comments by Victor Panaretos from Switzerland. The area of time series has commentary by Pedro Morettin from Brazil. The biologically oriented papers are commented by Tore Schweder from Norway and Haiganoush Preisler from USA, while the point process papers have comments by Peter Guttorp from USA. In addition, the volume contains a Statistical Science interview with Dr. Brillinger, and his bibliography.

Statistical Methods in Social Science Research

Statistical Methods in Social Science Research
Author :
Publisher : Springer
Total Pages : 158
Release :
ISBN-10 : 9789811321467
ISBN-13 : 9811321469
Rating : 4/5 (67 Downloads)

Synopsis Statistical Methods in Social Science Research by : S P Mukherjee

This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.