Federated Learning And Ai For Healthcare 50
Download Federated Learning And Ai For Healthcare 50 full books in PDF, epub, and Kindle. Read online free Federated Learning And Ai For Healthcare 50 ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Hassan, Ahdi |
Publisher |
: IGI Global |
Total Pages |
: 413 |
Release |
: 2023-12-18 |
ISBN-10 |
: 9798369310830 |
ISBN-13 |
: |
Rating |
: 4/5 (30 Downloads) |
Synopsis Federated Learning and AI for Healthcare 5.0 by : Hassan, Ahdi
The Healthcare sector is evolving with Healthcare 5.0, promising better patient care and efficiency. However, challenges like data security and analysis arise due to increased digitization. Federated Learning and AI for Healthcare 5.0 offers solutions, explaining cloud computing's role in managing data and advocating for security measures. It explores federated learning's use in maintaining data privacy during analysis, presenting practical cases for implementation. The book also addresses emerging tech like quantum computing and blockchain-based services, envisioning an innovative Healthcare 5.0. It empowers healthcare professionals, IT experts, and data scientists to leverage these technologies for improved patient care and system efficiency, making Healthcare 5.0 secure and patient centric.
Author |
: Qiang Yang |
Publisher |
: Springer Nature |
Total Pages |
: 291 |
Release |
: 2020-11-25 |
ISBN-10 |
: 9783030630768 |
ISBN-13 |
: 3030630765 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Federated Learning by : Qiang Yang
This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”
Author |
: Adam Bohr |
Publisher |
: Academic Press |
Total Pages |
: 385 |
Release |
: 2020-06-21 |
ISBN-10 |
: 9780128184394 |
ISBN-13 |
: 0128184396 |
Rating |
: 4/5 (94 Downloads) |
Synopsis Artificial Intelligence in Healthcare by : Adam Bohr
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Author |
: Muhammad Habib ur Rehman |
Publisher |
: Springer Nature |
Total Pages |
: 207 |
Release |
: 2021-06-11 |
ISBN-10 |
: 9783030706043 |
ISBN-13 |
: 3030706044 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Federated Learning Systems by : Muhammad Habib ur Rehman
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.
Author |
: Agbotiname Lucky Imoize |
Publisher |
: Elsevier |
Total Pages |
: 459 |
Release |
: 2024-06-02 |
ISBN-10 |
: 9780443138966 |
ISBN-13 |
: 0443138966 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Federated Learning for Digital Healthcare Systems by : Agbotiname Lucky Imoize
Federated Learning for Digital Healthcare Systems critically examines the key factors that contribute to the problem of applying machine learning in healthcare systems and investigates how federated learning can be employed to address the problem. The book discusses, examines, and compares the applications of federated learning solutions in emerging digital healthcare systems, providing a critical look in terms of the required resources, computational complexity, and system performance. In the first section, chapters examine how to address critical security and privacy concerns and how to revamp existing machine learning models. In subsequent chapters, the book's authors review recent advances to tackle emerging efficient and lightweight algorithms and protocols to reduce computational overheads and communication costs in wireless healthcare systems. Consideration is also given to government and economic regulations as well as legal considerations when federated learning is applied to digital healthcare systems. - Provides insights into real-world scenarios of the design, development, deployment, application, management, and benefits of federated learning in emerging digital healthcare systems - Highlights the need to design efficient federated learning-based algorithms to tackle the proliferating security and patient privacy issues in digital healthcare systems - Reviews the latest research, along with practical solutions and applications developed by global experts from academia and industry
Author |
: Erik R. Ranschaert |
Publisher |
: Springer |
Total Pages |
: 369 |
Release |
: 2019-01-29 |
ISBN-10 |
: 9783319948782 |
ISBN-13 |
: 3319948784 |
Rating |
: 4/5 (82 Downloads) |
Synopsis Artificial Intelligence in Medical Imaging by : Erik R. Ranschaert
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Author |
: Kaushal Kishor |
Publisher |
: CRC Press |
Total Pages |
: 275 |
Release |
: 2024-10-30 |
ISBN-10 |
: 9781040146316 |
ISBN-13 |
: 1040146317 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Federated Learning for Smart Communication using IoT Application by : Kaushal Kishor
The effectiveness of federated learning in high‐performance information systems and informatics‐based solutions for addressing current information support requirements is demonstrated in this book. To address heterogeneity challenges in Internet of Things (IoT) contexts, Federated Learning for Smart Communication using IoT Application analyses the development of personalized federated learning algorithms capable of mitigating the detrimental consequences of heterogeneity in several dimensions. It includes case studies of IoT‐based human activity recognition to show the efficacy of personalized federated learning for intelligent IoT applications. Features: • Demonstrates how federated learning offers a novel approach to building personalized models from data without invading users’ privacy. • Describes how federated learning may assist in understanding and learning from user behavior in IoT applications while safeguarding user privacy. • Presents a detailed analysis of current research on federated learning, providing the reader with a broad understanding of the area. • Analyses the need for a personalized federated learning framework in cloud‐edge and wireless‐edge architecture for intelligent IoT applications. • Comprises real‐life case illustrations and examples to help consolidate understanding of topics presented in each chapter. This book is recommended for anyone interested in federated learning‐based intelligent algorithms for smart communications.
Author |
: Shadi Albarqouni |
Publisher |
: Springer Nature |
Total Pages |
: 215 |
Release |
: 2022-10-08 |
ISBN-10 |
: 9783031185236 |
ISBN-13 |
: 3031185234 |
Rating |
: 4/5 (36 Downloads) |
Synopsis Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health by : Shadi Albarqouni
This book constitutes the refereed proceedings of the Third MICCAI Workshop on Distributed, Collaborative, and Federated Learning, DeCaF 2022, and the Second MICCAI Workshop on Affordable AI and Healthcare, FAIR 2022, held in conjunction with MICCAI 2022, in Singapore in September 2022. FAIR 2022 was held as a hybrid event. DeCaF 2022 accepted 14 papers from the 18 submissions received. The workshop aims at creating a scientific discussion focusing on the comparison, evaluation, and discussion of methodological advancement and practical ideas about machine learning applied to problems where data cannot be stored in centralized databases or where information privacy is a priority. For FAIR 2022, 4 papers from 9 submissions were accepted for publication. The topics of the accepted submissions focus on deep ultrasound segmentation, portable OCT image quality enhancement, self-attention deep networks and knowledge distillation in low-regime setting.
Author |
: Kerrie Holley |
Publisher |
: "O'Reilly Media, Inc." |
Total Pages |
: 222 |
Release |
: 2024-08-20 |
ISBN-10 |
: 9781098160890 |
ISBN-13 |
: 1098160894 |
Rating |
: 4/5 (90 Downloads) |
Synopsis LLMs and Generative AI for Healthcare by : Kerrie Holley
Large language models (LLMs) and generative AI are rapidly changing the healthcare industry. These technologies have the potential to revolutionize healthcare by improving the efficiency, accuracy, and personalization of care. This practical book shows healthcare leaders, researchers, data scientists, and AI engineers the potential of LLMs and generative AI today and in the future, using storytelling and illustrative use cases in healthcare. Authors Kerrie Holley, former Google healthcare professionals, guide you through the transformative potential of large language models (LLMs) and generative AI in healthcare. From personalized patient care and clinical decision support to drug discovery and public health applications, this comprehensive exploration covers real-world uses and future possibilities of LLMs and generative AI in healthcare. With this book, you will: Understand the promise and challenges of LLMs in healthcare Learn the inner workings of LLMs and generative AI Explore automation of healthcare use cases for improved operations and patient care using LLMs Dive into patient experiences and clinical decision-making using generative AI Review future applications in pharmaceutical R&D, public health, and genomics Understand ethical considerations and responsible development of LLMs in healthcare "The authors illustrate generative's impact on drug development, presenting real-world examples of its ability to accelerate processes and improve outcomes across the pharmaceutical industry."--Harsh Pandey, VP, Data Analytics & Business Insights, Medidata-Dassault Kerrie Holley is a retired Google tech executive, IBM Fellow, and VP/CTO at Cisco. Holley's extensive experience includes serving as the first Technology Fellow at United Health Group (UHG), Optum, where he focused on advancing and applying AI, deep learning, and natural language processing in healthcare. Manish Mathur brings over two decades of expertise at the crossroads of healthcare and technology. A former executive at Google and Johnson & Johnson, he now serves as an independent consultant and advisor. He guides payers, providers, and life sciences companies in crafting cutting-edge healthcare solutions.
Author |
: Michael Mahler |
Publisher |
: Academic Press |
Total Pages |
: 302 |
Release |
: 2021-03-12 |
ISBN-10 |
: 9780323854320 |
ISBN-13 |
: 032385432X |
Rating |
: 4/5 (20 Downloads) |
Synopsis Precision Medicine and Artificial Intelligence by : Michael Mahler
Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine