Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations
Author :
Publisher : Independently Published
Total Pages : 48
Release :
ISBN-10 : 1723840939
ISBN-13 : 9781723840937
Rating : 4/5 (39 Downloads)

Synopsis Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations by : National Aeronautics and Space Adm Nasa

A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.Krueger, Ronald and Paris, Isabelle L. and OBrien, T. Kevin and Minguet, Pierre J.Langley Research CenterFATIGUE LIFE; COMPOSITE STRUCTURES; DEBONDING (MATERIALS); FLANGES; FATIGUE TESTS; FINITE ELEMENT METHOD; TWO DIMENSIONAL MODELS; LOADS (FORCES); CHARACTERIZATION

Fatigue in Composites

Fatigue in Composites
Author :
Publisher : Elsevier
Total Pages : 765
Release :
ISBN-10 : 9781855738577
ISBN-13 : 1855738570
Rating : 4/5 (77 Downloads)

Synopsis Fatigue in Composites by : Bryan Harris

This major handbook is the first authoritative survey of current knowledge of fatigue behaviour of composites. It deals in detail with a wide range of problems met by designers in the automotive, marine and structural engineering industries. Compiled from the contributions of some of the best-known researchers in the field, it provides an invaluable, practical and encyclopaedic handbook covering recent developments. - Comprehensively discusses the problems of fatigue in composites met by designers in the aerospace, marine and structural engineering industries - Provides a general introduction on fatigue in composites before reviewing current research on micromechanical aspects - Analyses various types of composites with respect to fatigue behaviour and testing and provides in-depth coverage of life-prediction models for constant variable stresses

Fatigue Debonding Characterization in Composite Skin/Stringer Configurations

Fatigue Debonding Characterization in Composite Skin/Stringer Configurations
Author :
Publisher :
Total Pages : 38
Release :
ISBN-10 : NASA:31769000624364
ISBN-13 :
Rating : 4/5 (64 Downloads)

Synopsis Fatigue Debonding Characterization in Composite Skin/Stringer Configurations by :

The objective of this work was to investigate the fatigue damage mechanisms and to identify the influence of skin stacking sequence in carbon epoxy composite bonded skin/stringer constructions. A simple 4-point-bending test fixture originally designed for previously performed monotonic tests was used to evaluate the fatigue debonding mechanisms between the skin and the bonded frame when the dominant loading in the skin is flexure along the edge of the frame. The specimens consisted of a tapered flange, representing the stringer, bonded onto a skin. Based on the results of previous monotonic tests two different skin lay-ups in combination with one flange lay-up were investigated. The tests were performed at load levels corresponding to 40%, 50%, 60%, 70%, and 80% of the monotonic fracture loads. Microscopic investigations of the specimen edges were used to document the onset of matrix cracking and delamination, and subsequent fatigue delamination growth. Typical damage patterns for both specimen configurations were identified. The observations showed that failure initiated near the tip of the flange in the form of matrix cracks at one of two locations, one in the skin and one in the flange. The location of the 90 deg flange and skin plies relative to the bondline was identified as the dominant lay-up feature that controlled the location and onset of matrix cracking and subsequent delamination. The fatigue delamination growth experiments yielded matrix cracking and delamination onset as a function of fatigue cycles as well as delamination length as a function of the number of cycles.

Delamination Behaviour of Composites

Delamination Behaviour of Composites
Author :
Publisher : Elsevier
Total Pages : 787
Release :
ISBN-10 : 9781845694821
ISBN-13 : 1845694821
Rating : 4/5 (21 Downloads)

Synopsis Delamination Behaviour of Composites by : Srinivasan Sridharan

Given such advantages as low weight compared to strength and toughness, laminated composites are now used in a wide range of applications. Their increasing use has underlined the need to understand their principal mode of failure, delamination. This important book reviews key research in understanding and preventing delamination.The first part of the book reviews general issues such as the role of fracture mechanics in understanding delamination, design issues and ways of testing delamination resistance. Part two describes techniques for detecting and characterising delamination such as piezoelectric sensors, the use of lamb waves and acoustic emission techniques. The next two sections of the book discuss ways of studying and modelling delamination behaviour. The final part of the book reviews research on delamination behaviour in particular conditions such as shell and sandwich structures, z-pin bridging and resin bonding.With its distinguished editor and international team of contributors, Delamination behaviour of composites is a standard reference for all those researching laminated composites and using them in such diverse applications as microelectronics, aerospace, marine, automotive and civil engineering. - Reviews the role of fracture mechanics in understanding delamination, design issues and ways of testing delamination resistance - Discuss ways of studying and modelling delamination behaviour - A standard reference for all those researching laminated composites

Handbook of Structural Life Assessment

Handbook of Structural Life Assessment
Author :
Publisher : John Wiley & Sons
Total Pages : 1421
Release :
ISBN-10 : 9781119135487
ISBN-13 : 1119135486
Rating : 4/5 (87 Downloads)

Synopsis Handbook of Structural Life Assessment by : Raouf A. Ibrahim

This important, self-contained reference deals with structural life assessment (SLA) and structural health monitoring (SHM) in a combined form. SLA periodically evaluates the state and condition of a structural system and provides recommendations for possible maintenance actions or the end of structural service life. It is a diversified field and relies on the theories of fracture mechanics, fatigue damage process, and reliability theory. For common structures, their life assessment is not only governed by the theory of fracture mechanics and fatigue damage process, but by other factors such as corrosion, grounding, and sudden collision. On the other hand, SHM deals with the detection, prediction, and location of crack development online. Both SLA and SHM are combined in a unified and coherent treatment.

The Virtual Crack Closure Technique: History, Approach and Applications

The Virtual Crack Closure Technique: History, Approach and Applications
Author :
Publisher :
Total Pages : 66
Release :
ISBN-10 : NASA:31769000714348
ISBN-13 :
Rating : 4/5 (48 Downloads)

Synopsis The Virtual Crack Closure Technique: History, Approach and Applications by : Ronald Krueger

An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral elements with linear and quadratic shape functions are given. Formula for applying the technique in conjuction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.

Polymer Matrix Composites: Materials Usage, Design, and Analysis

Polymer Matrix Composites: Materials Usage, Design, and Analysis
Author :
Publisher : SAE International
Total Pages : 955
Release :
ISBN-10 : 9780768078138
ISBN-13 : 076807813X
Rating : 4/5 (38 Downloads)

Synopsis Polymer Matrix Composites: Materials Usage, Design, and Analysis by : Composite Materials Handbook – 17 (CMH-17)

The third volume of this six-volume compendium provides methodologies and lessons learned for the design, analysis, manufacture, and field support of fiber-reinforced, polymeric-matrix composite structures. It also provides guidance on material and process specifications and procedures for using the data that is presented in Volume 2. The information provided is consistent with the guidance provided in Volume 1, and is an extensive compilation of the current knowledge and experiences of engineers and scientists from industry, government, and academia who are active in composites. The Composite Materials Handbook, referred to by industry groups as CMH-17, is a six-volume engineering reference tool that contains over 1,000 records of the latest test data for polymer matrix, metal matrix, ceramic matrix, and structural sandwich composites. CMH-17 provides information and guidance necessary to design and fabricate end items from composite materials. It includes properties of composite materials that meet specific data requirements as well as guidelines for design, analysis, material selection, manufacturing, quality control, and repair. The primary purpose of the handbook is to standardize engineering methodologies related to testing, data reduction, and reporting of property data for current and emerging composite materials. It is used by engineers worldwide in designing and fabricating products made from composite materials.