Failure Rate Modelling For Reliability And Risk
Download Failure Rate Modelling For Reliability And Risk full books in PDF, epub, and Kindle. Read online free Failure Rate Modelling For Reliability And Risk ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Maxim Finkelstein |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 290 |
Release |
: 2008-11-07 |
ISBN-10 |
: 9781848009868 |
ISBN-13 |
: 1848009860 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Failure Rate Modelling for Reliability and Risk by : Maxim Finkelstein
“Failure Rate Modeling for Reliability and Risk” focuses on reliability theory, and to the failure rate (hazard rate, force of mortality) modeling and its generalizations to systems operating in a random environment and to repairable systems. The failure rate is one of the crucial probabilistic characteristics for a number of disciplines; including reliability, survival analysis, risk analysis and demography. The book presents a systematic study of the failure rate and related indices, and covers a number of important applications where the failure rate plays the major role. Applications in engineering systems are studied, together with some actuarial, biological and demographic examples. The book provides a survey of this broad and interdisciplinary subject which will be invaluable to researchers and advanced students in reliability engineering and applied statistics, as well as to demographers, econometricians, actuaries and many other mathematically oriented researchers.
Author |
: David J. Smith |
Publisher |
: Elsevier |
Total Pages |
: 463 |
Release |
: 2011-06-29 |
ISBN-10 |
: 9780080969039 |
ISBN-13 |
: 0080969038 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Reliability, Maintainability and Risk by : David J. Smith
Reliability, Maintainability and Risk: Practical Methods for Engineers, Eighth Edition, discusses tools and techniques for reliable and safe engineering, and for optimizing maintenance strategies. It emphasizes the importance of using reliability techniques to identify and eliminate potential failures early in the design cycle. The focus is on techniques known as RAMS (reliability, availability, maintainability, and safety-integrity). The book is organized into five parts. Part 1 on reliability parameters and costs traces the history of reliability and safety technology and presents a cost-effective approach to quality, reliability, and safety. Part 2 deals with the interpretation of failure rates, while Part 3 focuses on the prediction of reliability and risk. Part 4 discusses design and assurance techniques; review and testing techniques; reliability growth modeling; field data collection and feedback; predicting and demonstrating repair times; quantified reliability maintenance; and systematic failures. Part 5 deals with legal, management and safety issues, such as project management, product liability, and safety legislation. - 8th edition of this core reference for engineers who deal with the design or operation of any safety critical systems, processes or operations - Answers the question: how can a defect that costs less than $1000 dollars to identify at the process design stage be prevented from escalating to a $100,000 field defect, or a $1m+ catastrophe - Revised throughout, with new examples, and standards, including must have material on the new edition of global functional safety standard IEC 61508, which launches in 2010
Author |
: Nozer D. Singpurwalla |
Publisher |
: John Wiley & Sons |
Total Pages |
: 396 |
Release |
: 2006-08-14 |
ISBN-10 |
: 9780470060339 |
ISBN-13 |
: 0470060336 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Reliability and Risk by : Nozer D. Singpurwalla
We all like to know how reliable and how risky certain situations are, and our increasing reliance on technology has led to the need for more precise assessments than ever before. Such precision has resulted in efforts both to sharpen the notions of risk and reliability, and to quantify them. Quantification is required for normative decision-making, especially decisions pertaining to our safety and wellbeing. Increasingly in recent years Bayesian methods have become key to such quantifications. Reliability and Risk provides a comprehensive overview of the mathematical and statistical aspects of risk and reliability analysis, from a Bayesian perspective. This book sets out to change the way in which we think about reliability and survival analysis by casting them in the broader context of decision-making. This is achieved by: Providing a broad coverage of the diverse aspects of reliability, including: multivariate failure models, dynamic reliability, event history analysis, non-parametric Bayes, competing risks, co-operative and competing systems, and signature analysis. Covering the essentials of Bayesian statistics and exchangeability, enabling readers who are unfamiliar with Bayesian inference to benefit from the book. Introducing the notion of “composite reliability”, or the collective reliability of a population of items. Discussing the relationship between notions of reliability and survival analysis and econometrics and financial risk. Reliability and Risk can most profitably be used by practitioners and research workers in reliability and survivability as a source of information, reference, and open problems. It can also form the basis of a graduate level course in reliability and risk analysis for students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations research, and other mathematically oriented scientists, wherein the instructor could supplement the material with examples and problems.
Author |
: Andrew N O'Connor |
Publisher |
: RIAC |
Total Pages |
: 220 |
Release |
: 2011 |
ISBN-10 |
: 9781933904061 |
ISBN-13 |
: 1933904062 |
Rating |
: 4/5 (61 Downloads) |
Synopsis Probability Distributions Used in Reliability Engineering by : Andrew N O'Connor
The book provides details on 22 probability distributions. Each distribution section provides a graphical visualization and formulas for distribution parameters, along with distribution formulas. Common statistics such as moments and percentile formulas are followed by likelihood functions and in many cases the derivation of maximum likelihood estimates. Bayesian non-informative and conjugate priors are provided followed by a discussion on the distribution characteristics and applications in reliability engineering.
Author |
: Michael T. Todinov |
Publisher |
: Elsevier |
Total Pages |
: 396 |
Release |
: 2006-11-03 |
ISBN-10 |
: 9780080467559 |
ISBN-13 |
: 0080467555 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Risk-Based Reliability Analysis and Generic Principles for Risk Reduction by : Michael T. Todinov
This book has been written with the intention to fill two big gaps in the reliability and risk literature: the risk-based reliability analysis as a powerful alternative to the traditional reliability analysis and the generic principles for reducing technical risk. An important theme in the book is the generic principles and techniques for reducing technical risk. These have been classified into three major categories: preventive (reducing the likelihood of failure), protective (reducing the consequences from failure) and dual (reducing both, the likelihood and the consequences from failure). Many of these principles (for example: avoiding clustering of events, deliberately introducing weak links, reducing sensitivity, introducing changes with opposite sign, etc.) are discussed in the reliability literature for the first time. Significant space has been allocated to component reliability. In the last chapter of the book, several applications are discussed of a powerful equation which constitutes the core of a new theory of locally initiated component failure by flaws whose number is a random variable. - Offers a shift in the existing paradigm for conducting reliability analyses - Covers risk-based reliability analysis and generic principles for reducing risk - Provides a new measure of risk based on the distribution of the potential losses from failure as well as the basic principles for risk-based design - Incorporates fast algorithms for system reliability analysis and discrete-event simulators - Includes the probability of failure of a structure with complex shape expressed with a simple equation
Author |
: Panel on Reliability Growth Methods for Defense Systems |
Publisher |
: National Academy Press |
Total Pages |
: 235 |
Release |
: 2015-03-01 |
ISBN-10 |
: 0309314747 |
ISBN-13 |
: 9780309314749 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Reliability Growth by : Panel on Reliability Growth Methods for Defense Systems
A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.
Author |
: Michael Todinov |
Publisher |
: John Wiley & Sons |
Total Pages |
: 286 |
Release |
: 2018-12-10 |
ISBN-10 |
: 9781119477587 |
ISBN-13 |
: 1119477581 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Methods for Reliability Improvement and Risk Reduction by : Michael Todinov
Reliability is one of the most important attributes for the products and processes of any company or organization. This important work provides a powerful framework of domain-independent reliability improvement and risk reducing methods which can greatly lower risk in any area of human activity. It reviews existing methods for risk reduction that can be classified as domain-independent and introduces the following new domain-independent reliability improvement and risk reduction methods: Separation Stochastic separation Introducing deliberate weaknesses Segmentation Self-reinforcement Inversion Reducing the rate of accumulation of damage Permutation Substitution Limiting the space and time exposure Comparative reliability models The domain-independent methods for reliability improvement and risk reduction do not depend on the availability of past failure data, domain-specific expertise or knowledge of the failure mechanisms underlying the failure modes. Through numerous examples and case studies, this invaluable guide shows that many of the new domain-independent methods improve reliability at no extra cost or at a low cost. Using the proven methods in this book, any company and organisation can greatly enhance the reliability of its products and operations.
Author |
: Enrico Zio |
Publisher |
: World Scientific |
Total Pages |
: 363 |
Release |
: 2009 |
ISBN-10 |
: 9789812839015 |
ISBN-13 |
: 9812839011 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Computational Methods for Reliability and Risk Analysis by : Enrico Zio
This book illustrates a number of modelling and computational techniques for addressing relevant issues in reliability and risk analysis. In particular, it provides: i) a basic illustration of some methods used in reliability and risk analysis for modelling the stochastic failure and repair behaviour of systems, e.g. the Markov and Monte Carlo simulation methods; ii) an introduction to Genetic Algorithms, tailored to their application for RAMS (Reliability, Availability, Maintainability and Safety) optimization; iii) an introduction to key issues of system reliability and risk analysis, like dependent failures and importance measures; and iv) a presentation of the issue of uncertainty and of the techniques of sensitivity and uncertainty analysis used in support of reliability and risk analysis.The book provides a technical basis for senior undergraduate or graduate courses and a reference for researchers and practitioners in the field of reliability and risk analysis. Several practical examples are included to demonstrate the application of the concepts and techniques in practice.
Author |
: Mangey Ram |
Publisher |
: Elsevier |
Total Pages |
: 431 |
Release |
: 2021-08-12 |
ISBN-10 |
: 9780128233238 |
ISBN-13 |
: 0128233230 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Safety and Reliability Modeling and Its Applications by : Mangey Ram
Safety and Reliability Modeling and Its Applications combines work by leading researchers in engineering, statistics and mathematics who provide innovative methods and solutions for this fast-moving field. Safety and reliability analysis is one of the most multidimensional topics in engineering today. Its rapid development has created many opportunities and challenges for both industrialists and academics, while also completely changing the global design and systems engineering environment. As more modeling tasks can now be undertaken within a computer environment using simulation and virtual reality technologies, this book helps readers understand the number and variety of research studies focusing on this important topic. The book addresses these important recent developments, presenting new theoretical issues that were not previously presented in the literature, along with solutions to important practical problems and case studies that illustrate how to apply the methodology. Uses case studies from industry practice to explain innovative solutions to real world safety and reliability problems Addresses the full interdisciplinary range of topics that influence this complex field Provides brief introductions to important concepts, including stochastic reliability and Bayesian methods
Author |
: Lirong Cui |
Publisher |
: CRC Press |
Total Pages |
: 402 |
Release |
: 2020-09-01 |
ISBN-10 |
: 9781000094619 |
ISBN-13 |
: 1000094618 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Stochastic Models in Reliability Engineering by : Lirong Cui
This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years. The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems. The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, and dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field. The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, and experiments and applied probability and statistics.