Factor Analysis at 100

Factor Analysis at 100
Author :
Publisher : Routledge
Total Pages : 401
Release :
ISBN-10 : 9781135594046
ISBN-13 : 113559404X
Rating : 4/5 (46 Downloads)

Synopsis Factor Analysis at 100 by : Robert Cudeck

Factor analysis is one of the success stories of statistics in the social sciences. The reason for its wide appeal is that it provides a way to investigate latent variables, the fundamental traits and concepts in the study of individual differences. Because of its importance, a conference was held to mark the centennial of the publication of Charles Spearman's seminal 1904 article which introduced the major elements of this invaluable statistical tool. This book evolved from that conference. It provides a retrospective look at major issues and developments as well as a prospective view of future directions in factor analysis and related methods. In so doing, it demonstrates how and why factor analysis is considered to be one of the methodological pillars of behavioral research. Featuring an outstanding collection of contributors, this volume offers unique insights on factor analysis and its related methods. Several chapters have a clear historical perspective, while others present new ideas along with historical summaries. In addition, the book reviews some of the extensions of factor analysis to such techniques as latent growth curve models, models for categorical data, and structural equation models. Factor Analysis at 100 will appeal to graduate students and researchers in the behavioral, social, health, and biological sciences who use this technique in their research. A basic knowledge of factor analysis is required and a working knowledge of linear algebra is helpful.

Factor Analysis at 100

Factor Analysis at 100
Author :
Publisher : Routledge
Total Pages : 385
Release :
ISBN-10 : 9781135594039
ISBN-13 : 1135594031
Rating : 4/5 (39 Downloads)

Synopsis Factor Analysis at 100 by : Robert Cudeck

This book provides a retrospective look at major developments as well as a prospective view of future directions in factor analysis. In so doing, it demonstrates how and why factor analysis is considered to be one of the methodological pillars of behavioral research. Featuring an outstanding collection of contributors, this volume offers unique insights on factor analysis and its related methods. The book reviews some of the extensions of factor analysis to such techniques as latent growth curve models, models for categorical data, and structural equation models. Intended for graduate students and researchers in the behavioral, social, health, and biological sciences who use this technique in their research, a basic knowledge of factor analysis is required and a working knowledge of linear algebra is helpful.

A First Course in Factor Analysis

A First Course in Factor Analysis
Author :
Publisher : Psychology Press
Total Pages : 443
Release :
ISBN-10 : 9781317844075
ISBN-13 : 1317844076
Rating : 4/5 (75 Downloads)

Synopsis A First Course in Factor Analysis by : Andrew L. Comrey

The goal of this book is to foster a basic understanding of factor analytic techniques so that readers can use them in their own research and critically evaluate their use by other researchers. Both the underlying theory and correct application are emphasized. The theory is presented through the mathematical basis of the most common factor analytic models and several methods used in factor analysis. On the application side, considerable attention is given to the extraction problem, the rotation problem, and the interpretation of factor analytic results. Hence, readers are given a background of understanding in the the theory underlying factor analysis and then taken through the steps in executing a proper analysis -- from the initial problem of design through choice of correlation coefficient, factor extraction, factor rotation, factor interpretation, and writing up results. This revised edition includes introductions to newer methods -- such as confirmatory factor analysis and structural equation modeling -- that have revolutionized factor analysis in recent years. To help remove some of the mystery underlying these newer, more complex methods, the introductory examples utilize EQS and LISREL. Updated material relating to the validation of the Comrey Personality Scales also has been added. Finally, program disks for running factor analyses on either an IBM-compatible PC or a mainframe with FORTRAN capabilities are available. The intended audience for this volume includes talented but mathematically unsophisticated advanced undergraduates, graduate students, and research workers seeking to acquire a basic understanding of the principles supporting factor analysis. Disks are available in 5.25" and 3.5" formats for both mainframe programs written in Fortran and IBM PCs and compatibles running a math co-processor.

A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling

A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling
Author :
Publisher : SAS Institute
Total Pages : 444
Release :
ISBN-10 : 9781612903873
ISBN-13 : 1612903878
Rating : 4/5 (73 Downloads)

Synopsis A Step-by-Step Approach to Using SAS for Factor Analysis and Structural Equation Modeling by : Larry Hatcher

Annotation Structural equation modeling (SEM) has become one of the most important statistical procedures in the social and behavioral sciences. This easy-to-understand guide makes SEM accessible to all userseven those whose training in statistics is limited or who have never used SAS. It gently guides users through the basics of using SAS and shows how to perform some of the most sophisticated data-analysis procedures used by researchers: exploratory factor analysis, path analysis, confirmatory factor analysis, and structural equation modeling. It shows how to perform analyses with user-friendly PROC CALIS, and offers solutions for problems often encountered in real-world research. This second edition contains new material on sample-size estimation for path analysis and structural equation modeling. In a single user-friendly volume, students and researchers will find all the information they need in order to master SAS basics before moving on to factor analysis, path analysis, and other advanced statistical procedures.

Foundations of Factor Analysis

Foundations of Factor Analysis
Author :
Publisher : CRC Press
Total Pages : 550
Release :
ISBN-10 : 9781420099812
ISBN-13 : 1420099817
Rating : 4/5 (12 Downloads)

Synopsis Foundations of Factor Analysis by : Stanley A Mulaik

Providing a practical, thorough understanding of how factor analysis works, Foundations of Factor Analysis, Second Edition discusses the assumptions underlying the equations and procedures of this method. It also explains the options in commercial computer programs for performing factor analysis and structural equation modeling. This long-awaited e

Exploratory Factor Analysis

Exploratory Factor Analysis
Author :
Publisher : Oxford University Press
Total Pages : 170
Release :
ISBN-10 : 9780199734177
ISBN-13 : 0199734178
Rating : 4/5 (77 Downloads)

Synopsis Exploratory Factor Analysis by : Leandre R. Fabrigar

This book provides a non-mathematical introduction to the theory and application of Exploratory Factor Analysis. Among the issues discussed are the use of confirmatory versus exploratory factor analysis, the use of principal components analysis versus common factor analysis, and procedures for determining the appropriate number of factors.

Factor Analysis and Related Methods

Factor Analysis and Related Methods
Author :
Publisher : Psychology Press
Total Pages : 280
Release :
ISBN-10 : 0898593883
ISBN-13 : 9780898593884
Rating : 4/5 (83 Downloads)

Synopsis Factor Analysis and Related Methods by : Roderick P. McDonald

First Published in 1985. Routledge is an imprint of Taylor & Francis, an informa company.

Making Sense of Factor Analysis

Making Sense of Factor Analysis
Author :
Publisher : SAGE
Total Pages : 369
Release :
ISBN-10 : 9780761919506
ISBN-13 : 0761919503
Rating : 4/5 (06 Downloads)

Synopsis Making Sense of Factor Analysis by : Marjorie A. Pett

Many health care practitioners and researchers are aware of the need to employ factor analysis in order to develop more sensitive instruments for data collection. Unfortunately, factor analysis is not a unidimensional approach that is easily understood by even the most experienced of researchers. Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research presents a straightforward explanation of the complex statistical procedures involved in factor analysis. Authors Marjorie A. Pett, Nancy M. Lackey, and John J. Sullivan provide a step-by-step approach to analyzing data using statistical computer packages like SPSS and SAS. Emphasizing the interrelationship between factor analysis and test construction, the authors examine numerous practical and theoretical decisions that must be made to efficiently run and accurately interpret the outcomes of these sophisticated computer programs. This accessible volume will help both novice and experienced health care professionals to Increase their knowledge of the use of factor analysis in health care research Understand journal articles that report the use of factor analysis in test construction and instrument development Create new data collection instruments Examine the reliability and structure of existing health care instruments Interpret and report computer-generated output from a factor analysis run Making Sense of Factor Analysis: The Use of Factor Analysis for Instrument Development in Health Care Research offers a practical method for developing tests, validating instruments, and reporting outcomes through the use of factor analysis. To facilitate learning, the authors provide concrete testing examples, three appendices of additional information, and a glossary of key terms. Ideal for graduate level nursing students, this book is also an invaluable resource for health care researchers.

A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio

A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio
Author :
Publisher : Routledge
Total Pages : 199
Release :
ISBN-10 : 9781000336566
ISBN-13 : 1000336565
Rating : 4/5 (66 Downloads)

Synopsis A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio by : Marley Watkins

This is a concise, easy to use, step-by-step guide for applied researchers conducting exploratory factor analysis (EFA) using the open source software R. In this book, Dr. Watkins systematically reviews each decision step in EFA with screen shots of R and RStudio code, and recommends evidence-based best practice procedures. This is an eminently applied, practical approach with few or no formulas and is aimed at readers with little to no mathematical background. Dr. Watkins maintains an accessible tone throughout and uses minimal jargon and formula to help facilitate grasp of the key issues users will face while applying EFA, along with how to implement, interpret, and report results. Copious scholarly references and quotations are included to support the reader in responding to editorial reviews. This is a valuable resource for upper-level undergraduate and postgraduate students, as well as for more experienced researchers undertaking multivariate or structure equation modeling courses across the behavioral, medical, and social sciences.

Statistical Factor Analysis and Related Methods

Statistical Factor Analysis and Related Methods
Author :
Publisher : John Wiley & Sons
Total Pages : 770
Release :
ISBN-10 : 9780470317730
ISBN-13 : 0470317736
Rating : 4/5 (30 Downloads)

Synopsis Statistical Factor Analysis and Related Methods by : Alexander T. Basilevsky

Statistical Factor Analysis and Related Methods Theory andApplications In bridging the gap between the mathematical andstatistical theory of factor analysis, this new work represents thefirst unified treatment of the theory and practice of factoranalysis and latent variable models. It focuses on such areasas: * The classical principal components model and sample-populationinference * Several extensions and modifications of principal components,including Q and three-mode analysis and principal components in thecomplex domain * Maximum likelihood and weighted factor models, factoridentification, factor rotation, and the estimation of factorscores * The use of factor models in conjunction with various types ofdata including time series, spatial data, rank orders, and nominalvariable * Applications of factor models to the estimation of functionalforms and to least squares of regression estimators