Exterior Differential Systems And The Calculus Of Variations
Download Exterior Differential Systems And The Calculus Of Variations full books in PDF, epub, and Kindle. Read online free Exterior Differential Systems And The Calculus Of Variations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: P.A. Griffiths |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 348 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9781461581666 |
ISBN-13 |
: 1461581664 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Exterior Differential Systems and the Calculus of Variations by : P.A. Griffiths
15 0. PRELIMINARIES a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differentia! Ideals e) Exterior Differential Systems EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS ~liTH ONE I. 32 INDEPENDENT VARIABLE a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S II. 1D7 THEOREM AND EXAMPLES a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Pro~lems: 2 i) ( K ds for Plane Curves; i i) Affine Arclength; 2 iii) f K ds for Space Curves; and iv) Delauney Problem. II I. EULER EQUATIONS FOR VARIATIONAL PROBLEfiJS IN HOMOGENEOUS SPACES 161 a) Derivation of the Equations: i) Motivation; i i) Review of the Classical Case; iii) the Genera 1 Euler Equations 2 K /2 ds b) Examples: i) the Euler Equations Associated to f for lEn; but for Curves in i i) Some Problems as in i) sn; Non- Curves in iii) Euler Equations Associated to degenerate Ruled Surfaces IV.
Author |
: Robert L. Bryant |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 483 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9781461397144 |
ISBN-13 |
: 1461397146 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Exterior Differential Systems by : Robert L. Bryant
This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.
Author |
: P.A. Griffiths |
Publisher |
: Birkhäuser |
Total Pages |
: 339 |
Release |
: 2013-05-16 |
ISBN-10 |
: 1461581672 |
ISBN-13 |
: 9781461581673 |
Rating |
: 4/5 (72 Downloads) |
Synopsis Exterior Differential Systems and the Calculus of Variations by : P.A. Griffiths
15 0. PRELIMINARIES a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differentia! Ideals e) Exterior Differential Systems EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS ~liTH ONE I. 32 INDEPENDENT VARIABLE a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S II. 1D7 THEOREM AND EXAMPLES a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Pro~lems: 2 i) ( K ds for Plane Curves; i i) Affine Arclength; 2 iii) f K ds for Space Curves; and iv) Delauney Problem. II I. EULER EQUATIONS FOR VARIATIONAL PROBLEfiJS IN HOMOGENEOUS SPACES 161 a) Derivation of the Equations: i) Motivation; i i) Review of the Classical Case; iii) the Genera 1 Euler Equations 2 K /2 ds b) Examples: i) the Euler Equations Associated to f for lEn; but for Curves in i i) Some Problems as in i) sn; Non- Curves in iii) Euler Equations Associated to degenerate Ruled Surfaces IV.
Author |
: Robert Bryant |
Publisher |
: University of Chicago Press |
Total Pages |
: 230 |
Release |
: 2003-07 |
ISBN-10 |
: 0226077934 |
ISBN-13 |
: 9780226077932 |
Rating |
: 4/5 (34 Downloads) |
Synopsis Exterior Differential Systems and Euler-Lagrange Partial Differential Equations by : Robert Bryant
In Exterior Differential Systems, the authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study. Because it plays a central role in uncovering geometric properties of differential equations, the method of equivalence is particularly emphasized. In addition, the authors discuss conformally invariant systems at length, including results on the classification and application of symmetries and conservation laws. The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws. This timely synthesis of partial differential equations and differential geometry will be of fundamental importance to both students and experienced researchers working in geometric analysis.
Author |
: Luigi Ambrosio |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 347 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642571862 |
ISBN-13 |
: 3642571867 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Calculus of Variations and Partial Differential Equations by : Luigi Ambrosio
At the summer school in Pisa in September 1996, Luigi Ambrosio and Norman Dancer each gave a course on the geometric problem of evolution of a surface by mean curvature, and degree theory with applications to PDEs respectively. This self-contained presentation accessible to PhD students bridged the gap between standard courses and advanced research on these topics. The resulting book is divided accordingly into 2 parts, and neatly illustrates the 2-way interaction of problems and methods. Each of the courses is augmented and complemented by additional short chapters by other authors describing current research problems and results.
Author |
: Phillip Griffiths |
Publisher |
: Birkhauser |
Total Pages |
: 360 |
Release |
: 1983 |
ISBN-10 |
: UOM:39015015688545 |
ISBN-13 |
: |
Rating |
: 4/5 (45 Downloads) |
Synopsis Exterior Differential Systems and the Calculus of Variations by : Phillip Griffiths
Author |
: Thomas Andrew Ivey |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 394 |
Release |
: 2003 |
ISBN-10 |
: 9780821833759 |
ISBN-13 |
: 0821833758 |
Rating |
: 4/5 (59 Downloads) |
Synopsis Cartan for Beginners by : Thomas Andrew Ivey
This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.
Author |
: David Lovelock |
Publisher |
: Courier Corporation |
Total Pages |
: 402 |
Release |
: 2012-04-20 |
ISBN-10 |
: 9780486131986 |
ISBN-13 |
: 048613198X |
Rating |
: 4/5 (86 Downloads) |
Synopsis Tensors, Differential Forms, and Variational Principles by : David Lovelock
Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Author |
: Peter J. Vassiliou |
Publisher |
: Cambridge University Press |
Total Pages |
: 242 |
Release |
: 2000-03-13 |
ISBN-10 |
: 0521775981 |
ISBN-13 |
: 9780521775984 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Geometric Approaches to Differential Equations by : Peter J. Vassiliou
A concise and accessible introduction to the wide range of topics in geometric approaches to differential equations.
Author |
: William L. Burke |
Publisher |
: Cambridge University Press |
Total Pages |
: 440 |
Release |
: 1985-05-31 |
ISBN-10 |
: 0521269296 |
ISBN-13 |
: 9780521269292 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Applied Differential Geometry by : William L. Burke
This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.