Excursions into Combinatorial Geometry

Excursions into Combinatorial Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 428
Release :
ISBN-10 : 9783642592379
ISBN-13 : 3642592376
Rating : 4/5 (79 Downloads)

Synopsis Excursions into Combinatorial Geometry by : Vladimir Boltyanski

siehe Werbetext.

Introduction to Combinatorial Methods in Geometry

Introduction to Combinatorial Methods in Geometry
Author :
Publisher : CRC Press
Total Pages : 397
Release :
ISBN-10 : 9781040014264
ISBN-13 : 1040014267
Rating : 4/5 (64 Downloads)

Synopsis Introduction to Combinatorial Methods in Geometry by : Alexander Kharazishvili

This book offers an introduction to some combinatorial (also, set-theoretical) approaches and methods in geometry of the Euclidean space Rm. The topics discussed in the manuscript are due to the field of combinatorial and convex geometry. The author’s primary intention is to discuss those themes of Euclidean geometry which might be of interest to a sufficiently wide audience of potential readers. Accordingly, the material is explained in a simple and elementary form completely accessible to the college and university students. At the same time, the author reveals profound interactions between various facts and statements from different areas of mathematics: the theory of convex sets, finite and infinite combinatorics, graph theory, measure theory, classical number theory, etc. All chapters (and also the five Appendices) end with a number of exercises. These provide the reader with some additional information about topics considered in the main text of this book. Naturally, the exercises vary in their difficulty. Among them there are almost trivial, standard, nontrivial, rather difficult, and difficult. As a rule, more difficult exercises are marked by asterisks and are provided with necessary hints. The material presented is based on the lecture course given by the author. The choice of material serves to demonstrate the unity of mathematics and variety of unexpected interrelations between distinct mathematical branches.

Israel Gohberg and Friends

Israel Gohberg and Friends
Author :
Publisher : Springer Science & Business Media
Total Pages : 312
Release :
ISBN-10 : 9783764387341
ISBN-13 : 3764387343
Rating : 4/5 (41 Downloads)

Synopsis Israel Gohberg and Friends by : Harm Bart

Mathematicians do not work in isolation. They stand in a long and time honored tradition. They write papers and (sometimes) books, they read the publications of fellow workers in the ?eld, and they meet other mathematicians at conferences all over the world. In this way, in contact with colleagues far away and nearby, from the past (via their writings) and from the present, scienti?c results are obtained whicharerecognizedasvalid.Andthat–remarkablyenough–regardlessofethnic background, political inclination or religion. In this process, some distinguished individuals play a special and striking role. They assume a position of leadership. They guide the people working with them through uncharted territory, thereby making a lasting imprint on the ?eld. So- thing which can only be accomplished through a combination of rare talents: - usually broad knowledge, unfailing intuition and a certain kind of charisma that binds people together. AllofthisispresentinIsraelGohberg,themantowhomthisbookisdedicated,on theoccasionof his 80thbirthday.This comes to the foregroundunmistakably from the contributions from those who worked with him or whose life was a?ected by him. Gohberg’sexceptionalqualitiesarealsoapparentfromthe articleswritten by himself, sometimes jointly with others, that are reproduced in this book. Among these are stories of his life, some dealing with mathematical aspects, others of a more general nature. Also included are reminiscences paying tribute to a close colleaguewho isnotamongusanymore,speechesorreviewshighlightingthework and personality of a friend or esteemed colleague, and responses to the laudatio’s connected with the several honorary degrees that were bestowed upon him.

Discrete Geometry and Algebraic Combinatorics

Discrete Geometry and Algebraic Combinatorics
Author :
Publisher : American Mathematical Society
Total Pages : 202
Release :
ISBN-10 : 9781470409050
ISBN-13 : 1470409054
Rating : 4/5 (50 Downloads)

Synopsis Discrete Geometry and Algebraic Combinatorics by : Alexander Barg

This volume contains the proceedings of the AMS Special Session on Discrete Geometry and Algebraic Combinatorics held on January 11, 2013, in San Diego, California. The collection of articles in this volume is devoted to packings of metric spaces and related questions, and contains new results as well as surveys of some areas of discrete geometry. This volume consists of papers on combinatorics of transportation polytopes, including results on the diameter of graphs of such polytopes; the generalized Steiner problem and related topics of the minimal fillings theory; a survey of distance graphs and graphs of diameters, and a group of papers on applications of algebraic combinatorics to packings of metric spaces including sphere packings and topics in coding theory. In particular, this volume presents a new approach to duality in sphere packing based on the Poisson summation formula, applications of semidefinite programming to spherical codes and equiangular lines, new results in list decoding of a family of algebraic codes, and constructions of bent and semi-bent functions.

Excursions Into Combinatorial Geometry

Excursions Into Combinatorial Geometry
Author :
Publisher :
Total Pages : 440
Release :
ISBN-10 : 3642592384
ISBN-13 : 9783642592386
Rating : 4/5 (84 Downloads)

Synopsis Excursions Into Combinatorial Geometry by : Vladimir Boltyanski

Discrete Geometry and Symmetry

Discrete Geometry and Symmetry
Author :
Publisher : Springer
Total Pages : 349
Release :
ISBN-10 : 9783319784342
ISBN-13 : 331978434X
Rating : 4/5 (42 Downloads)

Synopsis Discrete Geometry and Symmetry by : Marston D. E. Conder

This book consists of contributions from experts, presenting a fruitful interplay between different approaches to discrete geometry. Most of the chapters were collected at the conference “Geometry and Symmetry” in Veszprém, Hungary from 29 June to 3 July 2015. The conference was dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays, acknowledging their highly regarded contributions in these fields. While the classical problems of discrete geometry have a strong connection to geometric analysis, coding theory, symmetry groups, and number theory, their connection to combinatorics and optimization has become of particular importance. The last decades have seen a revival of interest in discrete geometric structures and their symmetry. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory and geometry, combinatorial group theory, and hyperbolic geometry and topology. This book contains papers on new developments in these areas, including convex and abstract polytopes and their recent generalizations, tiling and packing, zonotopes, isoperimetric inequalities, and on the geometric and combinatorial aspects of linear optimization. The book is a valuable resource for researchers, both junior and senior, in the field of discrete geometry, combinatorics, or discrete optimization. Graduate students find state-of-the-art surveys and an open problem collection.

Surveys on Discrete and Computational Geometry

Surveys on Discrete and Computational Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 568
Release :
ISBN-10 : 9780821842393
ISBN-13 : 0821842390
Rating : 4/5 (93 Downloads)

Synopsis Surveys on Discrete and Computational Geometry by : Jacob E. Goodman

This volume contains nineteen survey papers describing the state of current research in discrete and computational geometry as well as a set of open problems presented at the 2006 AMS-IMS-SIAM Summer Research Conference Discrete and Computational Geometry--Twenty Years Later, held in Snowbird, Utah, in June 2006. Topics surveyed include metric graph theory, lattice polytopes, the combinatorial complexity of unions of geometric objects, line and pseudoline arrangements, algorithmic semialgebraic geometry, persistent homology, unfolding polyhedra, pseudo-triangulations, nonlinear computational geometry, $k$-sets, and the computational complexity of convex bodies.

Research Problems in Discrete Geometry

Research Problems in Discrete Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 507
Release :
ISBN-10 : 9780387299297
ISBN-13 : 0387299297
Rating : 4/5 (97 Downloads)

Synopsis Research Problems in Discrete Geometry by : Peter Brass

This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.

Bodies of Constant Width

Bodies of Constant Width
Author :
Publisher : Springer
Total Pages : 486
Release :
ISBN-10 : 9783030038687
ISBN-13 : 3030038688
Rating : 4/5 (87 Downloads)

Synopsis Bodies of Constant Width by : Horst Martini

This is the first comprehensive monograph to thoroughly investigate constant width bodies, which is a classic area of interest within convex geometry. It examines bodies of constant width from several points of view, and, in doing so, shows surprising connections between various areas of mathematics. Concise explanations and detailed proofs demonstrate the many interesting properties and applications of these bodies. Numerous instructive diagrams are provided throughout to illustrate these concepts. An introduction to convexity theory is first provided, and the basic properties of constant width bodies are then presented. The book then delves into a number of related topics, which include Constant width bodies in convexity (sections and projections, complete and reduced sets, mixed volumes, and further partial fields) Sets of constant width in non-Euclidean geometries (in real Banach spaces, and in hyperbolic, spherical, and further non-Euclidean spaces) The concept of constant width in analysis (using Fourier series, spherical integration, and other related methods) Sets of constant width in differential geometry (using systems of lines and discussing notions like curvature, evolutes, etc.) Bodies of constant width in topology (hyperspaces, transnormal manifolds, fiber bundles, and related topics) The notion of constant width in discrete geometry (referring to geometric inequalities, packings and coverings, etc.) Technical applications, such as film projectors, the square-hole drill, and rotary engines Bodies of Constant Width: An Introduction to Convex Geometry with Applications will be a valuable resource for graduate and advanced undergraduate students studying convex geometry and related fields. Additionally, it will appeal to any mathematicians with a general interest in geometry.

Classical Topics in Discrete Geometry

Classical Topics in Discrete Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 171
Release :
ISBN-10 : 9781441906007
ISBN-13 : 1441906002
Rating : 4/5 (07 Downloads)

Synopsis Classical Topics in Discrete Geometry by : Károly Bezdek

Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.