Examples and Problems in Mathematical Statistics

Examples and Problems in Mathematical Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 499
Release :
ISBN-10 : 9781118605837
ISBN-13 : 1118605837
Rating : 4/5 (37 Downloads)

Synopsis Examples and Problems in Mathematical Statistics by : Shelemyahu Zacks

Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.

Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions

Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions
Author :
Publisher : Courier Corporation
Total Pages : 516
Release :
ISBN-10 : 9780486137568
ISBN-13 : 0486137562
Rating : 4/5 (68 Downloads)

Synopsis Problems in Probability Theory, Mathematical Statistics and Theory of Random Functions by : A. A. Sveshnikov

Approximately 1,000 problems — with answers and solutions included at the back of the book — illustrate such topics as random events, random variables, limit theorems, Markov processes, and much more.

Problems in Mathematical Statistics

Problems in Mathematical Statistics
Author :
Publisher :
Total Pages : 278
Release :
ISBN-10 : 5030015388
ISBN-13 : 9785030015385
Rating : 4/5 (88 Downloads)

Synopsis Problems in Mathematical Statistics by : G.I. Ivchenko

All of Statistics

All of Statistics
Author :
Publisher : Springer Science & Business Media
Total Pages : 446
Release :
ISBN-10 : 9780387217369
ISBN-13 : 0387217363
Rating : 4/5 (69 Downloads)

Synopsis All of Statistics by : Larry Wasserman

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Mathematical Statistics

Mathematical Statistics
Author :
Publisher : Springer Science & Business Media
Total Pages : 607
Release :
ISBN-10 : 9780387217185
ISBN-13 : 0387217185
Rating : 4/5 (85 Downloads)

Synopsis Mathematical Statistics by : Jun Shao

This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. degree in statistics. This new edition has been revised and updated and in this fourth printing, errors have been ironed out. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics. The second chapter introduces some fundamental concepts in statistical decision theory and inference. Subsequent chapters contain detailed studies on some important topics: unbiased estimation, parametric estimation, nonparametric estimation, hypothesis testing, and confidence sets. A large number of exercises in each chapter provide not only practice problems for students, but also many additional results.

Mathematical Statistics for Economics and Business

Mathematical Statistics for Economics and Business
Author :
Publisher : Springer Science & Business Media
Total Pages : 777
Release :
ISBN-10 : 9781461450221
ISBN-13 : 1461450225
Rating : 4/5 (21 Downloads)

Synopsis Mathematical Statistics for Economics and Business by : Ron C. Mittelhammer

Mathematical Statistics for Economics and Business, Second Edition, provides a comprehensive introduction to the principles of mathematical statistics which underpin statistical analyses in the fields of economics, business, and econometrics. The selection of topics in this textbook is designed to provide students with a conceptual foundation that will facilitate a substantial understanding of statistical applications in these subjects. This new edition has been updated throughout and now also includes a downloadable Student Answer Manual containing detailed solutions to half of the over 300 end-of-chapter problems. After introducing the concepts of probability, random variables, and probability density functions, the author develops the key concepts of mathematical statistics, most notably: expectation, sampling, asymptotics, and the main families of distributions. The latter half of the book is then devoted to the theories of estimation and hypothesis testing with associated examples and problems that indicate their wide applicability in economics and business. Features of the new edition include: a reorganization of topic flow and presentation to facilitate reading and understanding; inclusion of additional topics of relevance to statistics and econometric applications; a more streamlined and simple-to-understand notation for multiple integration and multiple summation over general sets or vector arguments; updated examples; new end-of-chapter problems; a solution manual for students; a comprehensive answer manual for instructors; and a theorem and definition map. This book has evolved from numerous graduate courses in mathematical statistics and econometrics taught by the author, and will be ideal for students beginning graduate study as well as for advanced undergraduates.

Mathematical Statistics

Mathematical Statistics
Author :
Publisher : John Wiley & Sons
Total Pages : 611
Release :
ISBN-10 : 9781118771167
ISBN-13 : 1118771168
Rating : 4/5 (67 Downloads)

Synopsis Mathematical Statistics by : Richard J. Rossi

Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.

Statistics for Mathematicians

Statistics for Mathematicians
Author :
Publisher : Birkhäuser
Total Pages : 190
Release :
ISBN-10 : 9783319283418
ISBN-13 : 3319283413
Rating : 4/5 (18 Downloads)

Synopsis Statistics for Mathematicians by : Victor M. Panaretos

This textbook provides a coherent introduction to the main concepts and methods of one-parameter statistical inference. Intended for students of Mathematics taking their first course in Statistics, the focus is on Statistics for Mathematicians rather than on Mathematical Statistics. The goal is not to focus on the mathematical/theoretical aspects of the subject, but rather to provide an introduction to the subject tailored to the mindset and tastes of Mathematics students, who are sometimes turned off by the informal nature of Statistics courses. This book can be used as the basis for an elementary semester-long first course on Statistics with a firm sense of direction that does not sacrifice rigor. The deeper goal of the text is to attract the attention of promising Mathematics students.

40 Puzzles and Problems in Probability and Mathematical Statistics

40 Puzzles and Problems in Probability and Mathematical Statistics
Author :
Publisher : Springer Science & Business Media
Total Pages : 124
Release :
ISBN-10 : 9780387735122
ISBN-13 : 0387735127
Rating : 4/5 (22 Downloads)

Synopsis 40 Puzzles and Problems in Probability and Mathematical Statistics by : Wolf Schwarz

This book is based on the view that cognitive skills are best acquired by solving challenging, non-standard probability problems. Many puzzles and problems presented here are either new within a problem solving context (although as topics in fundamental research they are long known) or are variations of classical problems which follow directly from elementary concepts. A small number of particularly instructive problems is taken from previous sources which in this case are generally given. This book will be a handy resource for professors looking for problems to assign, for undergraduate math students, and for a more general audience of amateur scientists.

Mathematical Statistics with Applications in R

Mathematical Statistics with Applications in R
Author :
Publisher : Elsevier
Total Pages : 825
Release :
ISBN-10 : 9780124171329
ISBN-13 : 012417132X
Rating : 4/5 (29 Downloads)

Synopsis Mathematical Statistics with Applications in R by : Kandethody M. Ramachandran

Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner.This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students.Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. - Step-by-step procedure to solve real problems, making the topic more accessible - Exercises blend theory and modern applications - Practical, real-world chapter projects - Provides an optional section in each chapter on using Minitab, SPSS and SAS commands - Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods