Evolutionary Topology Optimization of Continuum Structures

Evolutionary Topology Optimization of Continuum Structures
Author :
Publisher : John Wiley & Sons
Total Pages : 240
Release :
ISBN-10 : 0470689471
ISBN-13 : 9780470689479
Rating : 4/5 (71 Downloads)

Synopsis Evolutionary Topology Optimization of Continuum Structures by : Xiaodong Huang

Evolutionary Topology Optimization of Continuum Structures treads new ground with a comprehensive study on the techniques and applications of evolutionary structural optimization (ESO) and its later version bi-directional ESO (BESO) methods. Since the ESO method was first introduced by Xie and Steven in 1992 and the publication of their well-known book Evolutionary Structural Optimization in 1997, there have been significant improvements in the techniques as well as important practical applications. The authors present these developments, illustrated by numerous interesting and detailed examples. They clearly demonstrate that the evolutionary structural optimization method is an effective approach capable of solving a wide range of topology optimization problems, including structures with geometrical and material nonlinearities, energy absorbing devices, periodical structures, bridges and buildings. Presents latest developments and applications in this increasingly popular & maturing optimization approach for engineers and architects; Authored by leading researchers in the field who have been working in the area of ESO and BESO developments since their conception; Includes a number of test problems for students as well as a chapter of case studies that includes several recent practical projects in which the authors have been involved; Accompanied by a website housing ESO/BESO computer programs at http://www.wiley.com/go/huang and test examples, as well as a chapter within the book giving a description and step-by-step instruction on how to use the software package BESO2D. Evolutionary Topology Optimization of Continuum Structures will appeal to researchers and graduate students working in structural design and optimization, and will also be of interest to civil and structural engineers, architects and mechanical engineers involved in creating innovative and efficient structures.

Evolutionary Topology Optimization of Continuum Structures

Evolutionary Topology Optimization of Continuum Structures
Author :
Publisher : Wiley
Total Pages : 240
Release :
ISBN-10 : 047074653X
ISBN-13 : 9780470746530
Rating : 4/5 (3X Downloads)

Synopsis Evolutionary Topology Optimization of Continuum Structures by : Xiaodong Huang

Evolutionary Topology Optimization of Continuum Structures treads new ground with a comprehensive study on the techniques and applications of evolutionary structural optimization (ESO) and its later version bi-directional ESO (BESO) methods. Since the ESO method was first introduced by Xie and Steven in 1992 and the publication of their well-known book Evolutionary Structural Optimization in 1997, there have been significant improvements in the techniques as well as important practical applications. The authors present these developments, illustrated by numerous interesting and detailed examples. They clearly demonstrate that the evolutionary structural optimization method is an effective approach capable of solving a wide range of topology optimization problems, including structures with geometrical and material nonlinearities, energy absorbing devices, periodical structures, bridges and buildings. Presents latest developments and applications in this increasingly popular & maturing optimization approach for engineers and architects; Authored by leading researchers in the field who have been working in the area of ESO and BESO developments since their conception; Includes a number of test problems for students as well as a chapter of case studies that includes several recent practical projects in which the authors have been involved; Accompanied by a website housing ESO/BESO computer programs at http://www.wiley.com/go/huang and test examples, as well as a chapter within the book giving a description and step-by-step instruction on how to use the software package BESO2D. Evolutionary Topology Optimization of Continuum Structures will appeal to researchers and graduate students working in structural design and optimization, and will also be of interest to civil and structural engineers, architects and mechanical engineers involved in creating innovative and efficient structures.

Topology Optimization in Structural and Continuum Mechanics

Topology Optimization in Structural and Continuum Mechanics
Author :
Publisher : Springer Science & Business Media
Total Pages : 471
Release :
ISBN-10 : 9783709116432
ISBN-13 : 3709116430
Rating : 4/5 (32 Downloads)

Synopsis Topology Optimization in Structural and Continuum Mechanics by : George I. N. Rozvany

The book covers new developments in structural topology optimization. Basic features and limitations of Michell’s truss theory, its extension to a broader class of support conditions, generalizations of truss topology optimization, and Michell continua are reviewed. For elastic bodies, the layout problems in linear elasticity are discussed and the method of relaxation by homogenization is outlined. The classical problem of free material design is shown to be reducible to a locking material problem, even in the multiload case. For structures subjected to dynamic loads, it is explained how they can be designed so that the structural eigenfrequencies of vibration are as far away as possible from a prescribed external excitation frequency (or a band of excitation frequencies) in order to avoid resonance phenomena with high vibration and noise levels. For diffusive and convective transport processes and multiphysics problems, applications of the density method are discussed. In order to take uncertainty in material parameters, geometry, and operating conditions into account, techniques of reliability-based design optimization are introduced and reviewed for their applicability to topology optimization.

Topology Optimization in Structural Mechanics

Topology Optimization in Structural Mechanics
Author :
Publisher : Springer
Total Pages : 325
Release :
ISBN-10 : 9783709125663
ISBN-13 : 3709125669
Rating : 4/5 (63 Downloads)

Synopsis Topology Optimization in Structural Mechanics by : G.I.N. Rozvany

Topology optimization is a relatively new and rapidly expanding field of structural mechanics. It deals with some of the most difficult problems of mechanical sciences but it is also of considerable practical interest, because it can achieve much greater savings than mere cross-section or shape optimization.

Topology Design of Structures

Topology Design of Structures
Author :
Publisher : Springer Science & Business Media
Total Pages : 564
Release :
ISBN-10 : 9789401118040
ISBN-13 : 9401118043
Rating : 4/5 (40 Downloads)

Synopsis Topology Design of Structures by : Martin P. Bendsøe

Proceedings of the NATO Advanced Research Workshop, Sesimbra, Portugal, June 20-26, 1992

Topology Optimization of Compliant Mechanisms

Topology Optimization of Compliant Mechanisms
Author :
Publisher : Springer
Total Pages : 202
Release :
ISBN-10 : 9789811304323
ISBN-13 : 9811304327
Rating : 4/5 (23 Downloads)

Synopsis Topology Optimization of Compliant Mechanisms by : Xianmin Zhang

This book covers various topics regarding the design of compliant mechanisms using topology optimization that have attracted a great deal of attention in recent decades. After comprehensively describing state-of-the-art methods for designing compliant mechanisms, it provides a new topology optimization method for finding new flexure hinges. It then presents several attempts to obtain distributed compliant mechanisms using the topology optimization method. Further, it discusses a Jacobian-based topology optimization method for compliant parallel mechanisms, and introduces readers to the topology optimization of compliant mechanisms, taking into account geometrical nonlinearity and reliability. Providing a systematic method for topology optimization of flexure hinges, which are essential for designing compliant mechanisms, the book offers a valuable resource for all readers who are interested in designing compliant mechanism-based positioning stages. In addition, the methods for solving the de facto hinges in topology optimized compliant mechanisms will benefit all engineers seeking to design micro-electro-mechanical system (MEMS) structures.

Optimization of Structural Topology, Shape, and Material

Optimization of Structural Topology, Shape, and Material
Author :
Publisher : Springer Science & Business Media
Total Pages : 278
Release :
ISBN-10 : 9783662031155
ISBN-13 : 3662031159
Rating : 4/5 (55 Downloads)

Synopsis Optimization of Structural Topology, Shape, and Material by : Martin P. Bendsoe

In the past, the possibilities of structural optimization were restricted to an optimal choice of profiles and shape. Further improvement can be obtained by selecting appropriate advanced materials and by optimizing the topology, i.e. finding the best position and arrangement of structural elements within a construction. The optimization of structural topology permits the use of optimization algorithms at a very early stage of the design process. The method presented in this book has been developed by Martin Bendsoe in cooperation with other researchers and can be considered as one of the most effective approaches to the optimization of layout and material design.

Optimization Of Structural And Mechanical Systems

Optimization Of Structural And Mechanical Systems
Author :
Publisher : World Scientific
Total Pages : 610
Release :
ISBN-10 : 9789814477222
ISBN-13 : 9814477222
Rating : 4/5 (22 Downloads)

Synopsis Optimization Of Structural And Mechanical Systems by : Jasbir S Arora

Computational optimization methods have matured over the last few years due to extensive research by applied mathematicians and engineers. These methods have been applied to many practical applications. Several general-purpose optimization programs and programs for specific engineering applications have become available to solve particular optimization problems.Written by leading researchers in the field of optimization, this highly readable book covers state-of-the-art computational algorithms as well as applications of optimization to structural and mechanical systems. Formulations of the problems and numerical solutions are presented, and topics requiring further research are also suggested.

An Introduction to Structural Optimization

An Introduction to Structural Optimization
Author :
Publisher : Springer Science & Business Media
Total Pages : 214
Release :
ISBN-10 : 9781402086656
ISBN-13 : 1402086652
Rating : 4/5 (56 Downloads)

Synopsis An Introduction to Structural Optimization by : Peter W. Christensen

This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying—frequently very many— variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.