Essentials Of Artificial Intelligence
Download Essentials Of Artificial Intelligence full books in PDF, epub, and Kindle. Read online free Essentials Of Artificial Intelligence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Matt Ginsberg |
Publisher |
: Newnes |
Total Pages |
: 445 |
Release |
: 2012-12-02 |
ISBN-10 |
: 9780323139687 |
ISBN-13 |
: 032313968X |
Rating |
: 4/5 (87 Downloads) |
Synopsis Essentials of Artificial Intelligence by : Matt Ginsberg
Since its publication, Essentials of Artificial Intelligence has been adopted at numerous universities and colleges offering introductory AI courses at the graduate and undergraduate levels. Based on the author's course at Stanford University, the book is an integrated, cohesive introduction to the field. The author has a fresh, entertaining writing style that combines clear presentations with humor and AI anecdotes. At the same time, as an active AI researcher, he presents the material authoritatively and with insight that reflects a contemporary, first hand understanding of the field. Pedagogically designed, this book offers a range of exercises and examples.
Author |
: Matthew L. Ginsberg |
Publisher |
: Morgan Kaufmann |
Total Pages |
: 456 |
Release |
: 1993-04 |
ISBN-10 |
: UOM:39015029999953 |
ISBN-13 |
: |
Rating |
: 4/5 (53 Downloads) |
Synopsis Essentials of Artificial Intelligence by : Matthew L. Ginsberg
Ginsberg offers the most contemporary coverage of AI essentials written in a friendly, conversational style.
Author |
: Matthew L. Ginsberg |
Publisher |
: Morgan Kaufmann Publishers |
Total Pages |
: 430 |
Release |
: 1993 |
ISBN-10 |
: 1558603344 |
ISBN-13 |
: 9781558603349 |
Rating |
: 4/5 (44 Downloads) |
Synopsis Essentials of Artificial Intelligence by : Matthew L. Ginsberg
Since its publication, Essentials of Artificial Intelligence has been adopted at numerous universities and colleges offering introductory AI courses at the graduate and undergraduate levels. Based on the author's course at Stanford University, the book is an integrated, cohesive introduction to the field. The author has a fresh, entertaining writing style that combines clear presentations with humor and AI anecdotes. At the same time, as an active AI researcher, he presents the material authoritatively and with insight that reflects a contemporary, first hand understanding of the field. Pedagogically designed, this book offers a range of exercises and examples.
Author |
: K.R. Chowdhary |
Publisher |
: Springer Nature |
Total Pages |
: 730 |
Release |
: 2020-04-04 |
ISBN-10 |
: 9788132239727 |
ISBN-13 |
: 8132239725 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Fundamentals of Artificial Intelligence by : K.R. Chowdhary
Fundamentals of Artificial Intelligence introduces the foundations of present day AI and provides coverage to recent developments in AI such as Constraint Satisfaction Problems, Adversarial Search and Game Theory, Statistical Learning Theory, Automated Planning, Intelligent Agents, Information Retrieval, Natural Language & Speech Processing, and Machine Vision. The book features a wealth of examples and illustrations, and practical approaches along with the theoretical concepts. It covers all major areas of AI in the domain of recent developments. The book is intended primarily for students who major in computer science at undergraduate and graduate level but will also be of interest as a foundation to researchers in the area of AI.
Author |
: Zsolt Nagy |
Publisher |
: Packt Publishing Ltd |
Total Pages |
: 330 |
Release |
: 2018-12-12 |
ISBN-10 |
: 9781789809206 |
ISBN-13 |
: 1789809207 |
Rating |
: 4/5 (06 Downloads) |
Synopsis Artificial Intelligence and Machine Learning Fundamentals by : Zsolt Nagy
Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).
Author |
: Tom Taulli |
Publisher |
: Apress |
Total Pages |
: 195 |
Release |
: 2019-08-01 |
ISBN-10 |
: 9781484250280 |
ISBN-13 |
: 1484250281 |
Rating |
: 4/5 (80 Downloads) |
Synopsis Artificial Intelligence Basics by : Tom Taulli
Artificial intelligence touches nearly every part of your day. While you may initially assume that technology such as smart speakers and digital assistants are the extent of it, AI has in fact rapidly become a general-purpose technology, reverberating across industries including transportation, healthcare, financial services, and many more. In our modern era, an understanding of AI and its possibilities for your organization is essential for growth and success. Artificial Intelligence Basics has arrived to equip you with a fundamental, timely grasp of AI and its impact. Author Tom Taulli provides an engaging, non-technical introduction to important concepts such as machine learning, deep learning, natural language processing (NLP), robotics, and more. In addition to guiding you through real-world case studies and practical implementation steps, Taulli uses his expertise to expand on the bigger questions that surround AI. These include societal trends, ethics, and future impact AI will have on world governments, company structures, and daily life. Google, Amazon, Facebook, and similar tech giants are far from the only organizations on which artificial intelligence has had—and will continue to have—an incredibly significant result. AI is the present and the future of your business as well as your home life. Strengthening your prowess on the subject will prove invaluable to your preparation for the future of tech, and Artificial Intelligence Basics is the indispensable guide that you’ve been seeking. What You Will Learn Study the core principles for AI approaches such as machine learning, deep learning, and NLP (Natural Language Processing)Discover the best practices to successfully implement AI by examining case studies including Uber, Facebook, Waymo, UiPath, and Stitch FixUnderstand how AI capabilities for robots can improve businessDeploy chatbots and Robotic Processing Automation (RPA) to save costs and improve customer serviceAvoid costly gotchasRecognize ethical concerns and other risk factors of using artificial intelligenceExamine the secular trends and how they may impact your business Who This Book Is For Readers without a technical background, such as managers, looking to understand AI to evaluate solutions.
Author |
: Kevin Warwick |
Publisher |
: Routledge |
Total Pages |
: 192 |
Release |
: 2013-03-01 |
ISBN-10 |
: 9781136629839 |
ISBN-13 |
: 1136629831 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Artificial Intelligence: The Basics by : Kevin Warwick
'if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory input in machine systems the nature of consciousness the controversial culturing of human neurons. Exploring issues at the heart of the subject, this book is suitable for anyone interested in AI, and provides an illuminating and accessible introduction to this fascinating subject.
Author |
: Mark Coeckelbergh |
Publisher |
: MIT Press |
Total Pages |
: 250 |
Release |
: 2020-04-07 |
ISBN-10 |
: 9780262538190 |
ISBN-13 |
: 0262538199 |
Rating |
: 4/5 (90 Downloads) |
Synopsis AI Ethics by : Mark Coeckelbergh
This overview of the ethical issues raised by artificial intelligence moves beyond hype and nightmare scenarios to address concrete questions—offering a compelling, necessary read for our ChatGPT era. Artificial intelligence powers Google’s search engine, enables Facebook to target advertising, and allows Alexa and Siri to do their jobs. AI is also behind self-driving cars, predictive policing, and autonomous weapons that can kill without human intervention. These and other AI applications raise complex ethical issues that are the subject of ongoing debate. This volume in the MIT Press Essential Knowledge series offers an accessible synthesis of these issues. Written by a philosopher of technology, AI Ethics goes beyond the usual hype and nightmare scenarios to address concrete questions. Mark Coeckelbergh describes influential AI narratives, ranging from Frankenstein’s monster to transhumanism and the technological singularity. He surveys relevant philosophical discussions: questions about the fundamental differences between humans and machines and debates over the moral status of AI. He explains the technology of AI, describing different approaches and focusing on machine learning and data science. He offers an overview of important ethical issues, including privacy concerns, responsibility and the delegation of decision making, transparency, and bias as it arises at all stages of data science processes. He also considers the future of work in an AI economy. Finally, he analyzes a range of policy proposals and discusses challenges for policymakers. He argues for ethical practices that embed values in design, translate democratic values into practices and include a vision of the good life and the good society.
Author |
: Ethem Alpaydin |
Publisher |
: MIT Press |
Total Pages |
: 225 |
Release |
: 2016-10-07 |
ISBN-10 |
: 9780262529518 |
ISBN-13 |
: 0262529513 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Machine Learning by : Ethem Alpaydin
A concise overview of machine learning—computer programs that learn from data—which underlies applications that include recommendation systems, face recognition, and driverless cars. Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition—as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as “Big Data” has gotten bigger, the theory of machine learning—the foundation of efforts to process that data into knowledge—has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of “data science,” and discusses the ethical and legal implications for data privacy and security.
Author |
: Ethem Alpaydin |
Publisher |
: MIT Press |
Total Pages |
: 639 |
Release |
: 2014-08-22 |
ISBN-10 |
: 9780262028189 |
ISBN-13 |
: 0262028182 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Introduction to Machine Learning by : Ethem Alpaydin
Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.