Ergodic Theory of Equivariant Diffeomorphisms: Markov Partitions and Stable Ergodicity

Ergodic Theory of Equivariant Diffeomorphisms: Markov Partitions and Stable Ergodicity
Author :
Publisher : American Mathematical Soc.
Total Pages : 113
Release :
ISBN-10 : 9780821835999
ISBN-13 : 0821835998
Rating : 4/5 (99 Downloads)

Synopsis Ergodic Theory of Equivariant Diffeomorphisms: Markov Partitions and Stable Ergodicity by : Mike Field

On the assumption that the $\Gamma$-orbits all have dimension equal to that of $\Gamma$, this title shows that there is a naturally defined $F$- and $\Gamma$-invariant measure $\nu$ of maximal entropy on $\Lambda$ (it is not assumed that the action of $\Gamma$ is free).

Smooth Ergodic Theory and Its Applications

Smooth Ergodic Theory and Its Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 895
Release :
ISBN-10 : 9780821826829
ISBN-13 : 0821826824
Rating : 4/5 (29 Downloads)

Synopsis Smooth Ergodic Theory and Its Applications by : A. B. Katok

During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.

Bifurcation, Symmetry and Patterns

Bifurcation, Symmetry and Patterns
Author :
Publisher : Birkhäuser
Total Pages : 215
Release :
ISBN-10 : 9783034879828
ISBN-13 : 3034879822
Rating : 4/5 (28 Downloads)

Synopsis Bifurcation, Symmetry and Patterns by : Jorge Buescu

The latest developments on both the theory and applications of bifurcations with symmetry. The text includes recent experimental work as well as new approaches to and applications of the theory to other sciences. It shows the range of dissemination of the work of Martin Golubitsky and Ian Stewart and its influence in modern mathematics at the same time as it contains work of young mathematicians in new directions. The range of topics includes mathematical biology, pattern formation, ergodic theory, normal forms, one-dimensional dynamics and symmetric dynamics.

Ergodic Theory

Ergodic Theory
Author :
Publisher : Springer Nature
Total Pages : 707
Release :
ISBN-10 : 9781071623886
ISBN-13 : 1071623885
Rating : 4/5 (86 Downloads)

Synopsis Ergodic Theory by : Cesar E. Silva

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras

Dynamics And Symmetry

Dynamics And Symmetry
Author :
Publisher : World Scientific
Total Pages : 493
Release :
ISBN-10 : 9781908979179
ISBN-13 : 1908979178
Rating : 4/5 (79 Downloads)

Synopsis Dynamics And Symmetry by : Michael Field

This book contains the first systematic exposition of the global and local theory of dynamics equivariant with respect to a (compact) Lie group. Aside from general genericity and normal form theorems on equivariant bifurcation, it describes many general families of examples of equivariant bifurcation and includes a number of novel geometric techniques, in particular, equivariant transversality. This important book forms a theoretical basis of future work on equivariant reversible and Hamiltonian systems.This book also provides a general and comprehensive introduction to codimension one equivariant bifurcation theory. In particular, it includes the bifurcation theory developed with Roger Richardson on subgroups of reflection groups and the Maximal Isotropy Subgroup Conjecture. A number of general results are also given on the global theory. Introductory material on groups, representations and G-manifolds are covered in the first three chapters of the book. In addition, a self-contained introduction of equivariant transversality is given, including necessary results on stratifications as well as results on equivariant jet transversality developed by Edward Bierstone./a

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds; A Finiteness Result

Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds; A Finiteness Result
Author :
Publisher : American Mathematical Soc.
Total Pages : 104
Release :
ISBN-10 : 9780821834602
ISBN-13 : 0821834606
Rating : 4/5 (02 Downloads)

Synopsis Equivariant, Almost-Arborescent Representations of Open Simply-Connected 3-Manifolds; A Finiteness Result by : Valentin Poenaru

Shows that at the cost of replacing $V DEGREES3$ by $V_h DEGREES3 = \{V DEGREES3$ with very many holes $\}$, we can always find representations $X DEGREES2 \stackrel {f} {\rightarrow} V DEGREES3$ with $X DEGREES2$ locally finite and almost-arborescent, with $\Psi (f)=\Phi (f)$, and with the ope

The Complex Monge-Ampere Equation and Pluripotential Theory

The Complex Monge-Ampere Equation and Pluripotential Theory
Author :
Publisher : American Mathematical Soc.
Total Pages : 82
Release :
ISBN-10 : 9780821837634
ISBN-13 : 082183763X
Rating : 4/5 (34 Downloads)

Synopsis The Complex Monge-Ampere Equation and Pluripotential Theory by : Sławomir Kołodziej

We collect here results on the existence and stability of weak solutions of complex Monge-Ampere equation proved by applying pluripotential theory methods and obtained in past three decades. First we set the stage introducing basic concepts and theorems of pluripotential theory. Then the Dirichlet problem for the complex Monge-Ampere equation is studied. The main goal is to give possibly detailed description of the nonnegative Borel measures which on the right hand side of the equation give rise to plurisubharmonic solutions satisfying additional requirements such as continuity, boundedness or some weaker ones. In the last part, the methods of pluripotential theory are implemented to prove the existence and stability of weak solutions of the complex Monge-Ampere equation on compact Kahler manifolds. This is a generalization of the Calabi-Yau theorem.

Stability of Spherically Symmetric Wave Maps

Stability of Spherically Symmetric Wave Maps
Author :
Publisher : American Mathematical Soc.
Total Pages : 96
Release :
ISBN-10 : 9780821838778
ISBN-13 : 0821838776
Rating : 4/5 (78 Downloads)

Synopsis Stability of Spherically Symmetric Wave Maps by : Joachim Krieger

Presents a study of Wave Maps from ${\mathbf{R}}^{2+1}$ to the hyperbolic plane ${\mathbf{H}}^{2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H^{1+\mu}$, $\mu>0$.

Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations

Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations
Author :
Publisher : American Mathematical Soc.
Total Pages : 126
Release :
ISBN-10 : 9780821837719
ISBN-13 : 0821837710
Rating : 4/5 (19 Downloads)

Synopsis Rigidity Theorems for Actions of Product Groups and Countable Borel Equivalence Relations by : Greg Hjorth

Contributes to the theory of Borel equivalence relations, considered up to Borel reducibility, and measures preserving group actions considered up to orbit equivalence. This title catalogs the actions of products of the free group and obtains additional rigidity theorems and relative ergodicity results in this context.

Quasi-Ordinary Power Series and Their Zeta Functions

Quasi-Ordinary Power Series and Their Zeta Functions
Author :
Publisher : American Mathematical Soc.
Total Pages : 100
Release :
ISBN-10 : 0821865633
ISBN-13 : 9780821865637
Rating : 4/5 (33 Downloads)

Synopsis Quasi-Ordinary Power Series and Their Zeta Functions by : Enrique Artal-Bartolo

The main objective of this paper is to prove the monodromy conjecture for the local Igusa zeta function of a quasi-ordinary polynomial of arbitrary dimension defined over a number field. In order to do it, we compute the local Denef-Loeser motivic zeta function $Z_{\text{DL}}(h,T)$ of a quasi-ordinary power series $h$ of arbitrary dimension over an algebraically closed field of characteristic zero from its characteristic exponents without using embedded resolution of singularities. This allows us to effectively represent $Z_{\text{DL}}(h,T)=P(T)/Q(T)$ such that almost all the candidate poles given by $Q(T)$ are poles. Anyway, these candidate poles give eigenvalues of the monodromy action on the complex $R\psi_h$ of nearby cycles on $h^{-1}(0).$ In particular we prove in this case the monodromy conjecture made by Denef-Loeser for the local motivic zeta function and the local topological zeta function. As a consequence, if $h$ is a quasi-ordinary polynomial defined over a number field we prove the Igusa monodromy conjecture for its local Igusa zeta function.