Ergodic Theory and Differentiable Dynamics

Ergodic Theory and Differentiable Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 328
Release :
ISBN-10 : 9783642703355
ISBN-13 : 3642703356
Rating : 4/5 (55 Downloads)

Synopsis Ergodic Theory and Differentiable Dynamics by : Ricardo Mane

This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.

Ergodic Theory and Differentiable Dynamics

Ergodic Theory and Differentiable Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 317
Release :
ISBN-10 : 3540152784
ISBN-13 : 9783540152781
Rating : 4/5 (84 Downloads)

Synopsis Ergodic Theory and Differentiable Dynamics by : Ricardo Mañé

This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con­ temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc­ tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts.

Elements of Differentiable Dynamics and Bifurcation Theory

Elements of Differentiable Dynamics and Bifurcation Theory
Author :
Publisher : Elsevier
Total Pages : 196
Release :
ISBN-10 : 9781483272184
ISBN-13 : 1483272184
Rating : 4/5 (84 Downloads)

Synopsis Elements of Differentiable Dynamics and Bifurcation Theory by : David Ruelle

Elements of Differentiable Dynamics and Bifurcation Theory provides an introduction to differentiable dynamics, with emphasis on bifurcation theory and hyperbolicity that is essential for the understanding of complicated time evolutions occurring in nature. This book discusses the differentiable dynamics, vector fields, fixed points and periodic orbits, and stable and unstable manifolds. The bifurcations of fixed points of a map and periodic orbits, case of semiflows, and saddle-node and Hopf bifurcation are also elaborated. This text likewise covers the persistence of normally hyperbolic manifolds, hyperbolic sets, homoclinic and heteroclinic intersections, and global bifurcations. This publication is suitable for mathematicians and mathematically inclined students of the natural sciences.

Ergodic Theory and Differentiable Dynamics

Ergodic Theory and Differentiable Dynamics
Author :
Publisher : Springer
Total Pages : 344
Release :
ISBN-10 : UOM:39015017294573
ISBN-13 :
Rating : 4/5 (73 Downloads)

Synopsis Ergodic Theory and Differentiable Dynamics by : Ricardo Mañé

This book is an introduction to ergodic theory, with an emphasis on its relationship with the theory of differentiable dynamical systems, sometimes called differentiable ergodic theory. The first chapter a quick review of measure theory is included as a reference.

Dynamical Systems and Ergodic Theory

Dynamical Systems and Ergodic Theory
Author :
Publisher : Cambridge University Press
Total Pages : 198
Release :
ISBN-10 : 0521575990
ISBN-13 : 9780521575997
Rating : 4/5 (90 Downloads)

Synopsis Dynamical Systems and Ergodic Theory by : Mark Pollicott

This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

Introduction to Smooth Ergodic Theory

Introduction to Smooth Ergodic Theory
Author :
Publisher : American Mathematical Society
Total Pages : 355
Release :
ISBN-10 : 9781470470654
ISBN-13 : 1470470659
Rating : 4/5 (54 Downloads)

Synopsis Introduction to Smooth Ergodic Theory by : Luís Barreira

This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.

The Theory of Chaotic Attractors

The Theory of Chaotic Attractors
Author :
Publisher : Springer Science & Business Media
Total Pages : 528
Release :
ISBN-10 : 0387403493
ISBN-13 : 9780387403496
Rating : 4/5 (93 Downloads)

Synopsis The Theory of Chaotic Attractors by : Brian R. Hunt

The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.

Ergodic Theory

Ergodic Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 486
Release :
ISBN-10 : 9780857290212
ISBN-13 : 0857290215
Rating : 4/5 (12 Downloads)

Synopsis Ergodic Theory by : Manfred Einsiedler

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

An Introduction to Ergodic Theory

An Introduction to Ergodic Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 268
Release :
ISBN-10 : 0387951520
ISBN-13 : 9780387951522
Rating : 4/5 (20 Downloads)

Synopsis An Introduction to Ergodic Theory by : Peter Walters

The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.