Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
Author :
Publisher : Springer Science & Business Media
Total Pages : 84
Release :
ISBN-10 : 9783540776055
ISBN-13 : 3540776052
Rating : 4/5 (55 Downloads)

Synopsis Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms by : Robert Edward Bowen

For this printing of R. Bowen's book, J.-R. Chazottes has retyped it in TeX for easier reading, thereby correcting typos and bibliographic details. From the Preface by D. Ruelle: "Rufus Bowen has left us a masterpiece of mathematical exposition... Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems."

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
Author :
Publisher : Springer
Total Pages : 80
Release :
ISBN-10 : 3540848878
ISBN-13 : 9783540848875
Rating : 4/5 (78 Downloads)

Synopsis Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms by : Robert Edward Bowen

For this printing of R. Bowen's book, J.-R. Chazottes has retyped it in TeX for easier reading, thereby correcting typos and bibliographic details. From the Preface by D. Ruelle: "Rufus Bowen has left us a masterpiece of mathematical exposition... Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems."

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
Author :
Publisher : Springer
Total Pages : 126
Release :
ISBN-10 : UOM:39015011951111
ISBN-13 :
Rating : 4/5 (11 Downloads)

Synopsis Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms by : Rufus Bowen

From the Preface by D. Ruelle: "...Rufus Bowen has left us a masterpiece of mathematical exposition... Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems.'' For this printing of R. Bowen's book, J.-R. Chazottes has rekeyed it in TeX for easier reading, thereby correcting typos and bibliographic details.

Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds

Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds
Author :
Publisher : Cambridge University Press
Total Pages : 176
Release :
ISBN-10 : 0521435935
ISBN-13 : 9780521435932
Rating : 4/5 (35 Downloads)

Synopsis Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds by : Mark Pollicott

These lecture notes provide a unique introduction to Pesin theory and its applications.

The Theory of Chaotic Attractors

The Theory of Chaotic Attractors
Author :
Publisher : Springer Science & Business Media
Total Pages : 528
Release :
ISBN-10 : 0387403493
ISBN-13 : 9780387403496
Rating : 4/5 (93 Downloads)

Synopsis The Theory of Chaotic Attractors by : Brian R. Hunt

The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.

Topics in Probability and Lie Groups

Topics in Probability and Lie Groups
Author :
Publisher : American Mathematical Soc.
Total Pages : 220
Release :
ISBN-10 : 0821870246
ISBN-13 : 9780821870242
Rating : 4/5 (46 Downloads)

Synopsis Topics in Probability and Lie Groups by : John Christopher Taylor

This volume is comprised of two parts: the first contains articles by S. N. Evans, F. Ledrappier, and Figa-Talomanaca. These articles arose from a Centre de Recherches de Mathematiques (CRM) seminar entitiled, ''Topics in Probability on Lie Groups: Boundary Theory''. Evans gives a synthesis of his pre-1992 work on Gaussian measures on vector spaces over a local field. Ledrappier uses the freegroup on $d$ generators as a paradigm for results on the asymptotic properties of random walks and harmonic measures on the Martin boundary. These articles are followed by a case study by Figa-Talamanca using Gelfand pairs to study a diffusion on a compact ultrametric space. The second part of the book is an appendix to the book Compactifications of Symmetric Spaces (Birkhauser) by Y. Guivarc'h and J. C. Taylor. This appendix consists of an article by each author and presents the contents of this book in a more algebraic way. L. Ji and J.-P. Anker simplifies some of their results on the asymptotics of the Green function that were used to compute Martin boundaries. And Taylor gives a self-contained account of Martin boundary theory for manifolds using the theory of second order strictly elliptic partial differential operators.

Thermodynamic Formalism

Thermodynamic Formalism
Author :
Publisher : Cambridge University Press
Total Pages : 198
Release :
ISBN-10 : 1139455281
ISBN-13 : 9781139455282
Rating : 4/5 (81 Downloads)

Synopsis Thermodynamic Formalism by : David Ruelle

Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological dynamics, constructive quantum field theory, the study of certain differentiable dynamical systems, notably Anosov diffeomorphisms and flows. It is also of interest to theoretical physicists concerned with the conceptual basis of equilibrium statistical mechanics. The level of the presentation is generally advanced, the objective being to provide an efficient research tool and a text for use in graduate teaching. Background material on mathematics has been collected in appendices to help the reader. Extra material is given in the form of updates of problems that were open at the original time of writing and as a new preface specially written for this new edition by the author.

Ergodic Theory

Ergodic Theory
Author :
Publisher : Springer Nature
Total Pages : 707
Release :
ISBN-10 : 9781071623886
ISBN-13 : 1071623885
Rating : 4/5 (86 Downloads)

Synopsis Ergodic Theory by : Cesar E. Silva

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras

Convexity in the Theory of Lattice Gases

Convexity in the Theory of Lattice Gases
Author :
Publisher : Princeton University Press
Total Pages : 257
Release :
ISBN-10 : 9781400868421
ISBN-13 : 1400868424
Rating : 4/5 (21 Downloads)

Synopsis Convexity in the Theory of Lattice Gases by : Robert B. Israel

In this book, Robert Israel considers classical and quantum lattice systems in terms of equilibrium statistical mechanics. He is especially concerned with the characterization of translation-invariant equilibrium states by a variational principle and the use of convexity in studying these states. Arthur Wightman's Introduction gives a general and historical perspective on convexity in statistical mechanics and thermodynamics. Professor Israel then reviews the general framework of the theory of lattice gases. In addition to presenting new and more direct proofs of some known results, he uses a version of a theorem by Bishop and Phelps to obtain existence results for phase transitions. Furthermore, he shows how the Gibbs Phase Rule and the existence of a wide variety of phase transitions follow from the general framework and the theory of convex functions. While the behavior of some of these phase transitions is very "pathological," others exhibit more "reasonable" behavior. As an example, the author considers the isotropic Heisenberg model. Formulating a version of the Gibbs Phase Rule using Hausdorff dimension, he shows that the finite dimensional subspaces satisfying this phase rule are generic. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.