Equations of Motion in General Relativity

Equations of Motion in General Relativity
Author :
Publisher : OUP Oxford
Total Pages : 168
Release :
ISBN-10 : 9780199584109
ISBN-13 : 0199584109
Rating : 4/5 (09 Downloads)

Synopsis Equations of Motion in General Relativity by : Hideki Asada

Einstein's theory of general relativity describes the gravitational field of a system of stars and predicts their paths by providing the 'equations of motion' of each star. Extracting these equations from his field equations is a highly technical procedure described in this book. Observable quantities can then be calculated to test the theory.

Motion and Relativity

Motion and Relativity
Author :
Publisher : Elsevier
Total Pages : 230
Release :
ISBN-10 : 9781483280387
ISBN-13 : 1483280381
Rating : 4/5 (87 Downloads)

Synopsis Motion and Relativity by : Leopold Infeld

Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation. The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation method and the equations of motion and motion and the Newtonian and post-Newtonian approximation. Topics include general remarks on the approximation method, two forms of the equations of motion and integrability conditions, approximation method and coordinate system, and development of the metric field. The manuscript examines the variational principle and the equations of motion of the third kind and the one and two particle problems. The formulation of the problem, Lagrangian up the sixth order, motion of a test particle in the field of a heavy particle, two-body problem, and motion of rotating bodies are discussed. The text is a dependable reference for readers interested in the methodologies, solutions, and approaches involved in the study of motion and relativity.

Galileo Unbound

Galileo Unbound
Author :
Publisher : Oxford University Press
Total Pages : 384
Release :
ISBN-10 : 9780192528506
ISBN-13 : 0192528505
Rating : 4/5 (06 Downloads)

Synopsis Galileo Unbound by : David D. Nolte

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.

Mass and Motion in General Relativity

Mass and Motion in General Relativity
Author :
Publisher : Springer Science & Business Media
Total Pages : 634
Release :
ISBN-10 : 9789048130153
ISBN-13 : 9048130158
Rating : 4/5 (53 Downloads)

Synopsis Mass and Motion in General Relativity by : Luc Blanchet

From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.

Spacetime and Geometry

Spacetime and Geometry
Author :
Publisher : Cambridge University Press
Total Pages : 529
Release :
ISBN-10 : 9781108488396
ISBN-13 : 1108488390
Rating : 4/5 (96 Downloads)

Synopsis Spacetime and Geometry by : Sean M. Carroll

An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.

A Short Course in General Relativity

A Short Course in General Relativity
Author :
Publisher : Springer Science & Business Media
Total Pages : 295
Release :
ISBN-10 : 9780387275833
ISBN-13 : 0387275835
Rating : 4/5 (33 Downloads)

Synopsis A Short Course in General Relativity by : James A. Foster

Suitable for a one-semester course in general relativity for senior undergraduates or beginning graduate students, this text clarifies the mathematical aspects of Einstein's theory of relativity without sacrificing physical understanding.

Mathematical Problems of General Relativity I

Mathematical Problems of General Relativity I
Author :
Publisher : European Mathematical Society
Total Pages : 164
Release :
ISBN-10 : 3037190051
ISBN-13 : 9783037190050
Rating : 4/5 (51 Downloads)

Synopsis Mathematical Problems of General Relativity I by : Demetrios Christodoulou

General relativity is a theory proposed by Einstein in 1915 as a unified theory of space, time and gravitation. It is based on and extends Newton's theory of gravitation as well as Newton's equations of motion. It is thus fundamentally rooted in classical mechanics. The theory can be seen as a development of Riemannian geometry, itself an extension of Gauss' intrinsic theory of curved surfaces in Euclidean space. The domain of application of the theory is astronomical systems. One of the mathematical methods analyzed and exploited in the present volume is an extension of Noether's fundamental principle connecting symmetries to conserved quantities. This is involved at a most elementary level in the very definition of the notion of hyperbolicity for an Euler-Lagrange system of partial differential equations. Another method, the study and systematic use of foliations by characteristic (null) hypersurfaces, is in the spirit of Roger Penrose's approach in his incompleteness theorem. The methods have applications beyond general relativity to problems in fluid mechanics and, more generally, to the mechanics and electrodynamics of continuous media. The book is intended for advanced students and researchers seeking an introduction to the methods and applications of general relativity.

The Geometry of Spacetime

The Geometry of Spacetime
Author :
Publisher : Springer Science & Business Media
Total Pages : 474
Release :
ISBN-10 : 9781475767360
ISBN-13 : 1475767366
Rating : 4/5 (60 Downloads)

Synopsis The Geometry of Spacetime by : James J. Callahan

Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.

The Cambridge Companion to Einstein

The Cambridge Companion to Einstein
Author :
Publisher : Cambridge University Press
Total Pages : 579
Release :
ISBN-10 : 9780521828345
ISBN-13 : 0521828341
Rating : 4/5 (45 Downloads)

Synopsis The Cambridge Companion to Einstein by : Michel Janssen

These fourteen essays by leading historians and philosophers of science introduce the reader to the work of Albert Einstein. Following an introduction that places Einstein's work in the context of his life and times, the essays explain his main contributions to physics in terms that are accessible to a general audience, including special and general relativity, quantum physics, statistical physics, and unified field theory. The closing essays explore the relation between Einstein's work and twentieth-century philosophy, as well as his political writings.