Charge and Energy Transfer Dynamics in Molecular Systems

Charge and Energy Transfer Dynamics in Molecular Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 600
Release :
ISBN-10 : 9783527633814
ISBN-13 : 3527633812
Rating : 4/5 (14 Downloads)

Synopsis Charge and Energy Transfer Dynamics in Molecular Systems by : Volkhard May

This 3rd edition has been expanded and updated to account for recent developments, while new illustrative examples as well as an enlarged reference list have also been added. It naturally retains the successful concept of its predecessors in presenting a unified perspective on molecular charge and energy transfer processes, thus bridging the regimes of coherent and dissipative dynamics, and establishing a connection between classic rate theories and modern treatments of ultrafast phenomena. Among the new topics are: - Time-dependent density functional theory - Heterogeneous electron transfer, e.g. between molecules and metal or semiconductor surfaces - Current flows through a single molecule. While serving as an introduction for graduate students and researchers, this is equally must-have reading for theoreticians and experimentalists, as well as an aid to interpreting experimental data and accessing the original literature.

Energy Transfer Dynamics

Energy Transfer Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 361
Release :
ISBN-10 : 9783642718670
ISBN-13 : 3642718671
Rating : 4/5 (70 Downloads)

Synopsis Energy Transfer Dynamics by : Terence William Barrett

On three occasions and at different locations, conferences were held to honor the eightieth birthday of Professor Herbert Frohlich: on the 18th December, 1985, in Liverpool, England; on the 14th February, 1986, in Stuttgart, Germany; and on the 8th March, 1986, on the Palm Coast, Florida. This Festschrift is a compilation of the papers of those conferences. Frohlich's choice of problems, from the earliest days, was couched in the phy sics of intrinsically interacting systems of excitation. One example, in which he set the course of research which is still followed, concerned dielectric breakdown, developed from the 1930's over several decades. The interacting systems are the electrons (receiving energy from an electric field) and lattice atom motion (taking energy from the electrons via "electron-phonon" interaction, hence heat dissipa tion). There is a threshold field above which the latter cannot keep up with the former, and the combined system (electrons plus phonons) "runs away"; that is to say, collectively it switches to a new state.

Energy Transfers in Fluid Flows

Energy Transfers in Fluid Flows
Author :
Publisher : Cambridge University Press
Total Pages : 566
Release :
ISBN-10 : 9781108226103
ISBN-13 : 1108226108
Rating : 4/5 (03 Downloads)

Synopsis Energy Transfers in Fluid Flows by : Mahendra K. Verma

An up-to-date comprehensive text useful for graduate students and academic researchers in the field of energy transfers in fluid flows. The initial part of the text covers discussion on energy transfer formalism in hydrodynamics and the latter part covers applications including passive scalar, buoyancy driven flows, magnetohydrodynamic (MHD), dynamo, rotating flows and compressible flows. Energy transfers among large-scale modes play a critical role in nonlinear instabilities and pattern formation and is discussed comprehensively in the chapter on buoyancy-driven flows. It derives formulae to compute Kolmogorov's energy flux, shell-to-shell energy transfers and locality. The book discusses the concept of energy transfer formalism which helps in calculating anisotropic turbulence.

Energy Transfer Dynamics in Biomaterial Systems

Energy Transfer Dynamics in Biomaterial Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 476
Release :
ISBN-10 : 9783642023064
ISBN-13 : 3642023061
Rating : 4/5 (64 Downloads)

Synopsis Energy Transfer Dynamics in Biomaterial Systems by : Irene Burghardt

The role of quantum coherence in promoting the e ciency of the initial stages of photosynthesis is an open and intriguing question. Lee, Cheng, and Fleming, Science 316, 1462 (2007) The understanding and design of functional biomaterials is one of today’s grand challenge areas that has sparked an intense exchange between biology, materials sciences, electronics, and various other disciplines. Many new - velopments are underway in organic photovoltaics, molecular electronics, and biomimetic research involving, e. g. , arti cal light-harvesting systems inspired by photosynthesis, along with a host of other concepts and device applications. In fact, materials scientists may well be advised to take advantage of Nature’s 3. 8 billion year head-start in designing new materials for light-harvesting and electro-optical applications. Since many of these developments reach into the molecular domain, the - derstanding of nano-structured functional materials equally necessitates f- damental aspects of molecular physics, chemistry, and biology. The elementary energy and charge transfer processes bear much similarity to the molecular phenomena that have been revealed in unprecedented detail by ultrafast op- cal spectroscopies. Indeed, these spectroscopies, which were initially developed and applied for the study of small molecular species, have already evolved into an invaluable tool to monitor ultrafast dynamics in complex biological and materials systems. The molecular-level phenomena in question are often of intrinsically quantum mechanical character, and involve tunneling, non-Born- Oppenheimer e ects, and quantum-mechanical phase coherence.

Potential Energy Surfaces and Dynamics Calculations

Potential Energy Surfaces and Dynamics Calculations
Author :
Publisher : Springer Science & Business Media
Total Pages : 859
Release :
ISBN-10 : 9781475717358
ISBN-13 : 1475717350
Rating : 4/5 (58 Downloads)

Synopsis Potential Energy Surfaces and Dynamics Calculations by : Donald Truhlar

The present volume is concerned with two of the central questions of chemical dynamics. What do we know about the energies of interaction of atoms and molecules with each other and with solid surfaces? How can such interaction energies be used to understand and make quantitative predictions about dynamical processes like scattering, energy transfer, and chemical reactions? It is becoming clearly recognized that the computer is leading to rapid progress in answering these questions. The computer allows probing dynamical mechanisms in fine detail and often allows us to answer questions that cannot be addressed with current experimental techniques. As we enter the 1980's, not only are more powerful and faster computers being used, but techniques and methods have been honed to a state where exciting and reliable data are being generated on a variety of systems at an unprecedented pace. The present volume presents a collection of work that illustrates the capabilities and some of the successes of this kind of computer-assisted research. In a 1978 Chemical Society Report, Frey and Walsh pointed out that "it is extremely doubtful if a calculated energy of activation for any unimolecular decomposition can replace an experimental deter mination. " However they also recorded that they "believe[d] that some of the elaborate calculations being performed at present do suggest that we may be approaching a time when a choice between reaction mechanisms will be helped by such [computational] work.

Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems

Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 1030
Release :
ISBN-10 : 9781402091308
ISBN-13 : 1402091303
Rating : 4/5 (08 Downloads)

Synopsis Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems by : Alexander F. Vakakis

This monograph evolved over a period of nine years from a series of papers and presentations addressing the subject of passive vibration control of mechanical s- tems subjected to broadband, transient inputs. The unifying theme is Targeted - ergy Transfer – TET, which represents a new and unique approach to the passive control problem, in which a strongly nonlinear, fully passive, local attachment, the Nonlinear Energy Sink – NES, is employed to drastically alter the dynamics of the primary system to which it is attached. The intrinsic capacity of the properly - signed NES to promote rapid localization of externally applied (narrowband) - bration or (broadband) shock energy to itself, where it can be captured and dis- pated, provides a powerful strategy for vibration control and the opens the pos- bility for a wide range of applications of TET, such as, vibration and shock i- lation, passive energy harvesting, aeroelastic instability (?utter) suppression, se- mic mitigation, vortex shedding control, enhanced reliability designs (for ex- ple in power grids) and others. The monograph is intended to provide a thorough explanation of the analytical, computational and experimental methods needed to formulate and study TET in mechanical and structural systems. Several prac- cal engineering applications are examined in detail, and experimental veri?cation and validation of the theoretical predictions are provided as well. The authors also suggest a number of possible future applications where application of TET seems promising. The authors are indebted to a number of sponsoring agencies.

Dynamics and Control of Energy Systems

Dynamics and Control of Energy Systems
Author :
Publisher : Springer Nature
Total Pages : 526
Release :
ISBN-10 : 9789811505362
ISBN-13 : 9811505365
Rating : 4/5 (62 Downloads)

Synopsis Dynamics and Control of Energy Systems by : Achintya Mukhopadhyay

This book presents recent advances in dynamics and control of different types of energy systems. It covers research on dynamics and control in energy systems from different aspects, namely, combustion, multiphase flow, nuclear, chemical and thermal. The chapters start from the basic concepts so that this book can be useful even for researchers with very little background in the area. A dedicated chapter provides an overview on the fundamental aspects of the dynamical systems approach. The book will be of use to researchers and professionals alike.

Advances in Energy Transfer Processes

Advances in Energy Transfer Processes
Author :
Publisher : World Scientific
Total Pages : 625
Release :
ISBN-10 : 9789812810960
ISBN-13 : 981281096X
Rating : 4/5 (60 Downloads)

Synopsis Advances in Energy Transfer Processes by : Xuesheng Chen

This book describes advances in both experimental and theoretical treatments in the field of energy transfer processes that are relevant to various fields, such as spectroscopy, laser technology, phosphors, artificial solar energy conversion, and photobiology. It presents the principles and available techniques through specific examples. In addition, it examines current and possible applications, including the most recent developments, and projects future advances and research possibilities in the field. Contents: Fundamental Interactions Leading to Energy Transfer (B Di Bartolo); Energy Transfer Processes in Atoms and Molecules (W DemtrAder et al.); Advances in the Techniques for the Study of Energy Transfer (D Hulin); Upconversion Phenomena with Laser Applications (X Chen); New Applications of Ultrafast Spectroscopy (J M Hvam); Efficient Solid State Lasers (N P Barnes); Emission Efficiency and Energy Transfer in Color Centers at High Concentrations (G Baldacchini); Four-Wave Mixing Studies of Energy Transfer Processes (G Boulon); Upconventional Light Emissions in Rare-Earth Doped Solids (F Auzel); Photonic Molecular and Supramolecular Devices (J M Lehn); Reflections on the Theory of Everything (G Costa); Earthquakes, Measurements, and Mitigation of Seismic Risk (R Console); Site Selectivity of Defects in IIIOCoV Compounds by Local Mode Spectroscopy and Model Calculations (D N Talwar); The General Non-Radiative Energy Transfer Master Equations for Crystalline Materials, the Exact Solution and Current Modeling (L A D az-Torres et al.); and other papers. Readership: Researchers and graduate students in the fields of lasers and optics."

The Dynamics of Heat

The Dynamics of Heat
Author :
Publisher : Springer Science & Business Media
Total Pages : 744
Release :
ISBN-10 : 9781441976048
ISBN-13 : 1441976043
Rating : 4/5 (48 Downloads)

Synopsis The Dynamics of Heat by : Hans U. Fuchs

Based on courses for students of science, engineering, and systems science at the Zurich University of Applied Sciences at Winterthur, this text approaches the fundamentals of thermodynamics from the point of view of continuum physics. By describing physical processes in terms of the flow and balance of physical quantities, the author achieves a unified approach to hydraulics, electricity, mechanics and thermodynamics. In this way, it becomes clear that entropy is the fundamental property that is transported in thermal processes (i.e., heat), and that temperature is the corresponding potential. The resulting theory of the creation, flow, and balance of entropy provides the foundation of a dynamical theory of heat. This extensively revised and updated second edition includes new material on dynamical chemical processes, thermoelectricity, and explicit dynamical modeling of thermal and chemical processes. To make the book more useful for courses on thermodynamics and physical chemistry at different levels, coverage of topics is divided into introductory and more advanced and formal treatments. Previous knowledge of thermodynamics is not required, but the reader should be familiar with basic electricity, mechanics, and chemistry and should have some knowledge of elementary calculus. The special feature of the first edition -- the integration of thermodynamics, heat transfer, and chemical processes -- has been maintained and strengthened. Key Features: · First revised edition of a successful text/reference in fourteen years · More than 25 percent new material · Provides a unified approach to thermodynamics and heat transport in fundamental physical and chemical processes · Includes worked examples, questions, and problem sets for use as a teaching text or to test the reader's understanding · Includes many system dynamics models of laboratory experiments

Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System

Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System
Author :
Publisher : Elsevier
Total Pages : 566
Release :
ISBN-10 : 9780128213735
ISBN-13 : 0128213736
Rating : 4/5 (35 Downloads)

Synopsis Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System by : Yukitoshi Nishimura

Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System provides a systematic understanding of Magnetosphere-Ionosphere-Thermosphere dynamics. Cross-scale coupling has become increasingly important in the Space Physics community. Although large-scale processes can specify the averaged state of the system reasonably well, they cannot accurately describe localized and rapidly varying structures in space in actual events. Such localized and variable structures can be as intense as the large-scale features. This book covers observations on quantifying coupling and energetics and simulation on evaluating impacts of cross-scale processes. It includes an in-depth review and summary of the current status of multi-scale coupling processes, fundamental physics, and concise illustrations and plots that are usable in tutorial presentations and classrooms. Organized by physical quantities in the system, Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System reviews recent advances in cross-scale coupling and energy transfer processes, making it an important resource for space physicists and researchers working on the magnetosphere, ionosphere, and thermosphere. Describes frontier science and major science around M-I-T coupling, allowing for foundational understanding of this emerging field in space physics Reviews recent and key findings in the cutting-edge of the science Discusses open questions and pathways for understanding how the field is evolving