Emergent Phenomena in Correlated Matter

Emergent Phenomena in Correlated Matter
Author :
Publisher : Forschungszentrum Jülich
Total Pages : 562
Release :
ISBN-10 : 9783893368846
ISBN-13 : 3893368841
Rating : 4/5 (46 Downloads)

Synopsis Emergent Phenomena in Correlated Matter by : Eva Pavarini

Frustrated Spin Systems

Frustrated Spin Systems
Author :
Publisher : World Scientific
Total Pages : 644
Release :
ISBN-10 : 9789814440745
ISBN-13 : 9814440744
Rating : 4/5 (45 Downloads)

Synopsis Frustrated Spin Systems by : H. T. Diep

This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can OCo within a single book OCo obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so."

Introduction to Frustrated Magnetism

Introduction to Frustrated Magnetism
Author :
Publisher : Springer Science & Business Media
Total Pages : 682
Release :
ISBN-10 : 9783642105890
ISBN-13 : 3642105890
Rating : 4/5 (90 Downloads)

Synopsis Introduction to Frustrated Magnetism by : Claudine Lacroix

The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.

Emergence of Unconventional Phases in Quantum Spin Systems

Emergence of Unconventional Phases in Quantum Spin Systems
Author :
Publisher :
Total Pages : 252
Release :
ISBN-10 : 0494579609
ISBN-13 : 9780494579602
Rating : 4/5 (09 Downloads)

Synopsis Emergence of Unconventional Phases in Quantum Spin Systems by : Jean-Sébastien Bernier

In this thesis, we investigate strongly correlated phenomena in quantum spin systems. In the first part of this work, we study geometrically frustrated antiferromagnets (AFMs). Generalizing the SU(2) Heisenberg Hamiltonian to Sp(N) symmetry, we obtain, in the large- N limit, the mean-field phase diagrams for the planar pyrochlore and cubic AFMs. We then use gauge theories to consider fluctuation effects about their respective mean-field configurations. We find, in addition to conventional Neel states, a plethora of novel magnetically disordered phases: two kinds of spin liquids, Z2 in 2+1D and U(1) in 3+1D, and several valence bond solids such as two and three-dimensional plaquette and columnar singlet states. We use the same approach to study the diamond lattice AFM which possesses extended classical ground state degeneracy. We demonstrate that quantum and entropic fluctuations lift this degeneracy in different ways.In the second part of the thesis, we study ultracold spinor atoms confined in optical lattices. We first demonstrate the feasibility of experimental realization of rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical lattice. We show that the ground state of such disordered rotor models with quadrupolar interactions can exhibit biaxial nematic ordering in the disorder-averaged sense, and suggest an imaging experiment to detect the biaxial nematicity in such systems. Finally, using variational wavefunction methods, we study the Mott phases and superfluid-insulator transition of spin-three bosons in an optical lattice with an anisotropic two dimensional optical trap. We chart out the phase diagrams for Mott states with n = 1 and n = 2 atoms per lattice site. We show that the long-range dipolar interaction stabilizes a state characterized by antiferromagnetic chains made of ferromagnetically aligned spins. We also obtain the mean-field phase boundary for the superfluid-insulator transition, and show that inside the superfluid phase and near the superfluid-insulator phase boundary, the system undergoes a first order antiferromagnetic-ferromagnetic spin ordering transition.

Frustrated Spin Systems

Frustrated Spin Systems
Author :
Publisher : World Scientific Publishing Company Incorporated
Total Pages : 617
Release :
ISBN-10 : 9814440736
ISBN-13 : 9789814440738
Rating : 4/5 (36 Downloads)

Synopsis Frustrated Spin Systems by : H. T. Diep

This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can within a single book obtain a global view of the current research development in the field of frustrated systems. This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors. The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so.

Magnetism and Transport Phenomena in Spin-Charge Coupled Systems on Frustrated Lattices

Magnetism and Transport Phenomena in Spin-Charge Coupled Systems on Frustrated Lattices
Author :
Publisher : Springer
Total Pages : 142
Release :
ISBN-10 : 9784431556633
ISBN-13 : 443155663X
Rating : 4/5 (33 Downloads)

Synopsis Magnetism and Transport Phenomena in Spin-Charge Coupled Systems on Frustrated Lattices by : Hiroaki Ishizuka

In this thesis, magnetism and transport phenomena in spin-charge coupled systems on frustrated lattices are theoretically investigated, focusing on Ising-spin Kondo lattice models and using a combination of Monte Carlo simulation and other techniques such as variational calculations and perturbation theory. The emphasis of the study is on how the cooperation of spin-charge coupling and geometrical frustration affects the thermodynamic properties of the Kondo lattice models; it presents the emergence of various novel magnetic states, such as the partial disorder, loop-liquid, and spin-cluster states. The thesis also reveals that the magnetic and electronic states and transport properties of these models demonstrate peculiar features, such as Dirac half-metals, anomalous Hall insulators, and spin Hall effects. Study of novel magnetic states and exotic transport phenomena in Kondo lattice systems is a field experiencing rapid progress. The interplay of charge and spin degrees of freedom potentially gives rise to various novel phases and transport phenomena which are related to strongly correlated electrons, frustrated magnetism, and topological states of matter. The results presented in this thesis include numerical calculations that are free from approximations. Accordingly, they provide reliable reference values, both for studying magnetism and transports of related models and for experimentally exploring novel states of matter in metallic magnets.

Frustrated Spin Systems (Third Edition)

Frustrated Spin Systems (Third Edition)
Author :
Publisher : World Scientific
Total Pages : 750
Release :
ISBN-10 : 9789811214158
ISBN-13 : 9811214158
Rating : 4/5 (58 Downloads)

Synopsis Frustrated Spin Systems (Third Edition) by : Hung-the Diep

Frustrated spin systems have been first investigated five decades ago. Well-known examples include the Ising model on the antiferromagnetic triangular lattice studied by G H Wannier in 1950 and the Heisenberg helical structure discovered independently by A Yoshimori, J Villainn and T A Kaplan in 1959. However, extensive investigations on frustrated spin systems have really started with the concept of frustration introduced at the same time by G Toulouse and by J Villain in 1977 in the context of spin glasses. The frustration is generated by the competition of different kinds of interaction and/or by the lattice geometry. As a result, in the ground state all bonds are not fully satisfied. In frustrated Ising spin systems, a number of spins behave as free spins. In frustrated vector spin systems, the ground-state configuration is usually non-collinear. The ground state of frustrated spin systems is therefore highly degenerate and new induced symmetries give rise to unexpected behaviors at finite temperatures. Many properties of frustrated systems are still not well understood at present. Theoretically, recent studies shown in this book reveal that established theories, numerical simulations as well as experimental techniques have encountered many difficulties in dealing with frustrated systems. In some sense, frustrated systems provide an excellent testing ground for approximations and theories. Experimentally, more and more frustrated materials are discovered with interesting properties for applications.

Spin Ice

Spin Ice
Author :
Publisher : Springer Nature
Total Pages : 492
Release :
ISBN-10 : 9783030708603
ISBN-13 : 3030708608
Rating : 4/5 (03 Downloads)

Synopsis Spin Ice by : Masafumi Udagawa

This book deals with a new class of magnetic materials, spin ice. Spin ice has become the canonical example of modern frustrated magnetism where competing interactions between spins set the rules for an emergent magnetostatic gauge field theory. Excitations take the form of magnetic monopoles or can condense via a Higgs mechanism. Beyond classical spin ice, the book describes the new physics emerging when quantum coherence (spin liquids, photon-like excitations) and itinerant electrons (anomalous Hall effect) are included in artificial systems. This first book dedicated to spin ice is a review of the current understanding of the field, both on the theoretical and experimental levels, written by leading experts. The book is written in a linear way with very few prerequisites. It also contains textbook-like descriptions of theoretical methods to help advanced students and researchers to enter the field.

Manipulating Quantum Systems

Manipulating Quantum Systems
Author :
Publisher : National Academies Press
Total Pages : 315
Release :
ISBN-10 : 9780309499545
ISBN-13 : 0309499542
Rating : 4/5 (45 Downloads)

Synopsis Manipulating Quantum Systems by : National Academies of Sciences, Engineering, and Medicine

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.