Elliptic Boundary Value Problems on Corner Domains

Elliptic Boundary Value Problems on Corner Domains
Author :
Publisher : Springer
Total Pages : 266
Release :
ISBN-10 : 9783540459422
ISBN-13 : 3540459421
Rating : 4/5 (22 Downloads)

Synopsis Elliptic Boundary Value Problems on Corner Domains by : Monique Dauge

This research monograph focusses on a large class of variational elliptic problems with mixed boundary conditions on domains with various corner singularities, edges, polyhedral vertices, cracks, slits. In a natural functional framework (ordinary Sobolev Hilbert spaces) Fredholm and semi-Fredholm properties of induced operators are completely characterized. By specially choosing the classes of operators and domains and the functional spaces used, precise and general results may be obtained on the smoothness and asymptotics of solutions. A new type of characteristic condition is introduced which involves the spectrum of associated operator pencils and some ideals of polynomials satisfying some boundary conditions on cones. The methods involve many perturbation arguments and a new use of Mellin transform. Basic knowledge about BVP on smooth domains in Sobolev spaces is the main prerequisite to the understanding of this book. Readers interested in the general theory of corner domains will find here a new basic theory (new approaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical analysis will find precise statements and also a means to obtain further one in many explicit situtations.

Elliptic Problems in Nonsmooth Domains

Elliptic Problems in Nonsmooth Domains
Author :
Publisher : SIAM
Total Pages : 426
Release :
ISBN-10 : 9781611972023
ISBN-13 : 1611972027
Rating : 4/5 (23 Downloads)

Synopsis Elliptic Problems in Nonsmooth Domains by : Pierre Grisvard

Originally published: Boston: Pitman Advanced Pub. Program, 1985.

Elliptic Problems in Domains with Piecewise Smooth Boundaries

Elliptic Problems in Domains with Piecewise Smooth Boundaries
Author :
Publisher : Walter de Gruyter
Total Pages : 537
Release :
ISBN-10 : 9783110848915
ISBN-13 : 3110848910
Rating : 4/5 (15 Downloads)

Synopsis Elliptic Problems in Domains with Piecewise Smooth Boundaries by : Sergey Nazarov

The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany

Boundary Value Problems and Integral Equations in Nonsmooth Domains

Boundary Value Problems and Integral Equations in Nonsmooth Domains
Author :
Publisher : CRC Press
Total Pages : 320
Release :
ISBN-10 : 082479320X
ISBN-13 : 9780824793203
Rating : 4/5 (0X Downloads)

Synopsis Boundary Value Problems and Integral Equations in Nonsmooth Domains by : Martin Costabel

Based on the International Conference on Boundary Value Problems and lntegral Equations In Nonsmooth Domains held recently in Luminy, France, this work contains strongly interrelated, refereed papers that detail the latest findings in the fields of nonsmooth domains and corner singularities. Two-dimensional polygonal or Lipschitz domains, three-dimensional polyhedral corners and edges, and conical points in any dimension are examined.

Elliptic Boundary Value Problems in Domains with Point Singularities

Elliptic Boundary Value Problems in Domains with Point Singularities
Author :
Publisher : American Mathematical Soc.
Total Pages : 426
Release :
ISBN-10 : 9780821807545
ISBN-13 : 0821807544
Rating : 4/5 (45 Downloads)

Synopsis Elliptic Boundary Value Problems in Domains with Point Singularities by : Vladimir Kozlov

For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Wave Factorization of Elliptic Symbols: Theory and Applications

Wave Factorization of Elliptic Symbols: Theory and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 192
Release :
ISBN-10 : 0792365313
ISBN-13 : 9780792365310
Rating : 4/5 (13 Downloads)

Synopsis Wave Factorization of Elliptic Symbols: Theory and Applications by : Vladimir B. Vasil'ev

This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory. Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.

Partial Differential Equations IX

Partial Differential Equations IX
Author :
Publisher : Springer Science & Business Media
Total Pages : 287
Release :
ISBN-10 : 9783662067215
ISBN-13 : 3662067218
Rating : 4/5 (15 Downloads)

Synopsis Partial Differential Equations IX by : M.S. Agranovich

This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains
Author :
Publisher : Birkhäuser
Total Pages : 448
Release :
ISBN-10 : 9783034884341
ISBN-13 : 3034884346
Rating : 4/5 (41 Downloads)

Synopsis Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains by : Vladimir Maz'ya

For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems.

Numerical Approximation Methods for Elliptic Boundary Value Problems

Numerical Approximation Methods for Elliptic Boundary Value Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 392
Release :
ISBN-10 : 9780387688053
ISBN-13 : 0387688056
Rating : 4/5 (53 Downloads)

Synopsis Numerical Approximation Methods for Elliptic Boundary Value Problems by : Olaf Steinbach

This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.