Elements Of Multivariate Time Series Analysis
Download Elements Of Multivariate Time Series Analysis full books in PDF, epub, and Kindle. Read online free Elements Of Multivariate Time Series Analysis ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Gregory C. Reinsel |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 278 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9781468401981 |
ISBN-13 |
: 146840198X |
Rating |
: 4/5 (81 Downloads) |
Synopsis Elements of Multivariate Time Series Analysis by : Gregory C. Reinsel
The use of methods of time series analysis in the study of multivariate time series has become of increased interest in recent years. Although the methods are rather well developed and understood for univarjate time series analysis, the situation is not so complete for the multivariate case. This book is designed to introduce the basic concepts and methods that are useful in the analysis and modeling of multivariate time series, with illustrations of these basic ideas. The development includes both traditional topics such as autocovariance and auto correlation matrices of stationary processes, properties of vector ARMA models, forecasting ARMA processes, least squares and maximum likelihood estimation techniques for vector AR and ARMA models, and model checking diagnostics for residuals, as well as topics of more recent interest for vector ARMA models such as reduced rank structure, structural indices, scalar component models, canonical correlation analyses for vector time series, multivariate unit-root models and cointegration structure, and state-space models and Kalman filtering techniques and applications. This book concentrates on the time-domain analysis of multivariate time series, and the important subject of spectral analysis is not considered here. For that topic, the reader is referred to the excellent books by Jenkins and Watts (1968), Hannan (1970), Priestley (1981), and others.
Author |
: Jan G. De Gooijer |
Publisher |
: Springer |
Total Pages |
: 626 |
Release |
: 2017-03-30 |
ISBN-10 |
: 9783319432526 |
ISBN-13 |
: 3319432524 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Elements of Nonlinear Time Series Analysis and Forecasting by : Jan G. De Gooijer
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Author |
: Helmut Lütkepohl |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 556 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9783662026915 |
ISBN-13 |
: 3662026910 |
Rating |
: 4/5 (15 Downloads) |
Synopsis Introduction to Multiple Time Series Analysis by : Helmut Lütkepohl
Author |
: Nina Golyandina |
Publisher |
: Springer Nature |
Total Pages |
: 156 |
Release |
: 2020-11-23 |
ISBN-10 |
: 9783662624364 |
ISBN-13 |
: 3662624362 |
Rating |
: 4/5 (64 Downloads) |
Synopsis Singular Spectrum Analysis for Time Series by : Nina Golyandina
This book gives an overview of singular spectrum analysis (SSA). SSA is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA is multi-purpose and naturally combines both model-free and parametric techniques, which makes it a very special and attractive methodology for solving a wide range of problems arising in diverse areas. Rapidly increasing number of novel applications of SSA is a consequence of the new fundamental research on SSA and the recent progress in computing and software engineering which made it possible to use SSA for very complicated tasks that were unthinkable twenty years ago. In this book, the methodology of SSA is concisely but at the same time comprehensively explained by two prominent statisticians with huge experience in SSA. The book offers a valuable resource for a very wide readership, including professional statisticians, specialists in signal and image processing, as well as specialists in numerous applied disciplines interested in using statistical methods for time series analysis, forecasting, signal and image processing. The second edition of the book contains many updates and some new material including a thorough discussion on the place of SSA among other methods and new sections on multivariate and multidimensional extensions of SSA.
Author |
: Rob J Hyndman |
Publisher |
: OTexts |
Total Pages |
: 380 |
Release |
: 2018-05-08 |
ISBN-10 |
: 9780987507112 |
ISBN-13 |
: 0987507117 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Forecasting: principles and practice by : Rob J Hyndman
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Author |
: William W. S. Wei |
Publisher |
: Pearson |
Total Pages |
: 648 |
Release |
: 2018-03-14 |
ISBN-10 |
: 0134995368 |
ISBN-13 |
: 9780134995366 |
Rating |
: 4/5 (68 Downloads) |
Synopsis Time Series Analysis Univariate and Multivariate Methods by : William W. S. Wei
With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Author |
: Paul S.P. Cowpertwait |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 262 |
Release |
: 2009-05-28 |
ISBN-10 |
: 9780387886985 |
ISBN-13 |
: 0387886982 |
Rating |
: 4/5 (85 Downloads) |
Synopsis Introductory Time Series with R by : Paul S.P. Cowpertwait
This book gives you a step-by-step introduction to analysing time series using the open source software R. Each time series model is motivated with practical applications, and is defined in mathematical notation. Once the model has been introduced it is used to generate synthetic data, using R code, and these generated data are then used to estimate its parameters. This sequence enhances understanding of both the time series model and the R function used to fit the model to data. Finally, the model is used to analyse observed data taken from a practical application. By using R, the whole procedure can be reproduced by the reader. All the data sets used in the book are available on the website http://staff.elena.aut.ac.nz/Paul-Cowpertwait/ts/. The book is written for undergraduate students of mathematics, economics, business and finance, geography, engineering and related disciplines, and postgraduate students who may need to analyse time series as part of their taught programme or their research.
Author |
: Jason Brownlee |
Publisher |
: Machine Learning Mastery |
Total Pages |
: 572 |
Release |
: 2018-08-30 |
ISBN-10 |
: |
ISBN-13 |
: |
Rating |
: 4/5 ( Downloads) |
Synopsis Deep Learning for Time Series Forecasting by : Jason Brownlee
Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Author |
: Tata Subba Rao |
Publisher |
: Elsevier |
Total Pages |
: 778 |
Release |
: 2012-06-26 |
ISBN-10 |
: 9780444538581 |
ISBN-13 |
: 0444538585 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Time Series Analysis: Methods and Applications by : Tata Subba Rao
'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.
Author |
: William W. S. Wei |
Publisher |
: John Wiley & Sons |
Total Pages |
: 536 |
Release |
: 2019-03-18 |
ISBN-10 |
: 9781119502852 |
ISBN-13 |
: 1119502853 |
Rating |
: 4/5 (52 Downloads) |
Synopsis Multivariate Time Series Analysis and Applications by : William W. S. Wei
An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.