Electronic Quantum Transport In Mesoscopic Semiconductor Structures
Download Electronic Quantum Transport In Mesoscopic Semiconductor Structures full books in PDF, epub, and Kindle. Read online free Electronic Quantum Transport In Mesoscopic Semiconductor Structures ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Thomas Ihn |
Publisher |
: Springer |
Total Pages |
: 270 |
Release |
: 2004-09-09 |
ISBN-10 |
: 9780387218281 |
ISBN-13 |
: 0387218289 |
Rating |
: 4/5 (81 Downloads) |
Synopsis Electronic Quantum Transport in Mesoscopic Semiconductor Structures by : Thomas Ihn
Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.
Author |
: Supriyo Datta |
Publisher |
: Cambridge University Press |
Total Pages |
: 398 |
Release |
: 1997-05-15 |
ISBN-10 |
: 9781139643016 |
ISBN-13 |
: 1139643010 |
Rating |
: 4/5 (16 Downloads) |
Synopsis Electronic Transport in Mesoscopic Systems by : Supriyo Datta
Advances in semiconductor technology have made possible the fabrication of structures whose dimensions are much smaller than the mean free path of an electron. This book gives a thorough account of the theory of electronic transport in such mesoscopic systems. After an initial chapter covering fundamental concepts, the transmission function formalism is presented, and used to describe three key topics in mesoscopic physics: the quantum Hall effect; localisation; and double-barrier tunnelling. Other sections include a discussion of optical analogies to mesoscopic phenomena, and the book concludes with a description of the non-equilibrium Green's function formalism and its relation to the transmission formalism. Complete with problems and solutions, the book will be of great interest to graduate students of mesoscopic physics and nanoelectronic device engineering, as well as to established researchers in these fields.
Author |
: Thomas Ihn |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 267 |
Release |
: 2004-01-08 |
ISBN-10 |
: 9780387400969 |
ISBN-13 |
: 0387400966 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Electronic Quantum Transport in Mesoscopic Semiconductor Structures by : Thomas Ihn
Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.
Author |
: Thomas Ihn |
Publisher |
: |
Total Pages |
: 288 |
Release |
: 2014-09-01 |
ISBN-10 |
: 146849385X |
ISBN-13 |
: 9781468493856 |
Rating |
: 4/5 (5X Downloads) |
Synopsis Electronic Quantum Transport in Mesoscopic Semiconductor Structures by : Thomas Ihn
Author |
: Carlo Jacoboni |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 590 |
Release |
: 2010-09-05 |
ISBN-10 |
: 9783642105869 |
ISBN-13 |
: 3642105866 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Theory of Electron Transport in Semiconductors by : Carlo Jacoboni
This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.
Author |
: Geoffrey Grinstein |
Publisher |
: World Scientific |
Total Pages |
: 270 |
Release |
: 1986-08-01 |
ISBN-10 |
: 9789814513609 |
ISBN-13 |
: 9814513601 |
Rating |
: 4/5 (09 Downloads) |
Synopsis Directions In Condensed Matter Physics: Memorial Volume In Honor Of Shang-keng Ma by : Geoffrey Grinstein
This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.
Author |
: Thomas Ihn |
Publisher |
: Oxford University Press |
Total Pages |
: 569 |
Release |
: 2010 |
ISBN-10 |
: 9780199534425 |
ISBN-13 |
: 019953442X |
Rating |
: 4/5 (25 Downloads) |
Synopsis Semiconductor Nanostructures by : Thomas Ihn
This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.
Author |
: Thierry Ouisse |
Publisher |
: John Wiley & Sons |
Total Pages |
: 282 |
Release |
: 2013-03-01 |
ISBN-10 |
: 9781118623381 |
ISBN-13 |
: 111862338X |
Rating |
: 4/5 (81 Downloads) |
Synopsis Electron Transport in Nanostructures and Mesoscopic Devices by : Thierry Ouisse
This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.
Author |
: Hartmut Haug |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 365 |
Release |
: 2007-12-10 |
ISBN-10 |
: 9783540735649 |
ISBN-13 |
: 354073564X |
Rating |
: 4/5 (49 Downloads) |
Synopsis Quantum Kinetics in Transport and Optics of Semiconductors by : Hartmut Haug
The state-of-the-art of quantum transport and quantum kinetics in semiconductors, plus the latest applications, are covered in this monograph. Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas. This book is both a reference work for researchers and a self-tutorial for graduate students.
Author |
: Eckehard Schöll |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 394 |
Release |
: 2013-11-27 |
ISBN-10 |
: 9781461558071 |
ISBN-13 |
: 1461558077 |
Rating |
: 4/5 (71 Downloads) |
Synopsis Theory of Transport Properties of Semiconductor Nanostructures by : Eckehard Schöll
Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.