Electronic Health Records And Medical Big Data
Download Electronic Health Records And Medical Big Data full books in PDF, epub, and Kindle. Read online free Electronic Health Records And Medical Big Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Sharona Hoffman |
Publisher |
: Cambridge University Press |
Total Pages |
: |
Release |
: 2016-12-07 |
ISBN-10 |
: 9781316738900 |
ISBN-13 |
: 1316738906 |
Rating |
: 4/5 (00 Downloads) |
Synopsis Electronic Health Records and Medical Big Data by : Sharona Hoffman
This book helps readers gain an in-depth understanding of electronic health record (EHR) systems, medical big data, and the regulations that govern them. It analyzes both the shortcomings and benefits of EHR systems, exploring the law's response to the creation of these systems, highlighting gaps in the current legal framework, and developing detailed recommendations for regulatory, policy, and technological improvements. Electronic Health Records and Medical Big Data addresses not only privacy and security concerns but also other important challenges, such as those related to data quality and data analysis. In addition, the author formulates a large body of recommendations to improve the technology's safety, security, and efficacy for both clinical and secondary (such as research) uses of medical data.
Author |
: MIT Critical Data |
Publisher |
: Springer |
Total Pages |
: 435 |
Release |
: 2016-09-09 |
ISBN-10 |
: 9783319437422 |
ISBN-13 |
: 3319437429 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Secondary Analysis of Electronic Health Records by : MIT Critical Data
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.
Author |
: Farrokh Alemi |
Publisher |
: |
Total Pages |
: 553 |
Release |
: 2019 |
ISBN-10 |
: 1640550631 |
ISBN-13 |
: 9781640550636 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Big Data in Healthcare by : Farrokh Alemi
Big Data in Healthcare: Statistical Analysis of the Electronic Health Record provides the statistical tools that healthcare leaders need to organize and interpret their data. Designed for accessibility to those with a limited mathematics background, the book demonstrates how to leverage EHR data for applications as diverse as healthcare marketing, pay for performance, cost accounting, and strategic management. Topics include:* Using real-world data to compare hospitals' performance. * Measuring the prognosis of patients through massive data* Distinguishing between fake claims and true improvements* Comparing the effectiveness of different interventions using causal analysis* Benchmarking different clinicians on the same set of patients* Remove confounding in observational dataThis book can be used in introductory courses on hypothesis testing, intermediate courses on regression, and advanced courses on causal analysis. It can also be used to learn SQL language. Its extensive online instructor resources include course syllabi, PowerPoint and video lectures, Excel exercises, individual and team assignments, answers to assignments, and student-organized tutorials. Big Data in Healthcare applies the building blocks of statistical thinking to the basic challenges that healthcare leaders face every day. Prepare for those challenges with the clear understanding of your data that statistical analysis can bring--and make the best possible decisions for maximum performance in the competitive field of healthcare.
Author |
: Agency for Healthcare Research and Quality/AHRQ |
Publisher |
: Government Printing Office |
Total Pages |
: 385 |
Release |
: 2014-04-01 |
ISBN-10 |
: 9781587634338 |
ISBN-13 |
: 1587634333 |
Rating |
: 4/5 (38 Downloads) |
Synopsis Registries for Evaluating Patient Outcomes by : Agency for Healthcare Research and Quality/AHRQ
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Author |
: Pieter Kubben |
Publisher |
: Springer |
Total Pages |
: 219 |
Release |
: 2018-12-21 |
ISBN-10 |
: 9783319997131 |
ISBN-13 |
: 3319997130 |
Rating |
: 4/5 (31 Downloads) |
Synopsis Fundamentals of Clinical Data Science by : Pieter Kubben
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
Author |
: Hulin Wu |
Publisher |
: CRC Press |
Total Pages |
: 329 |
Release |
: 2020-12-09 |
ISBN-10 |
: 9781000260946 |
ISBN-13 |
: 1000260941 |
Rating |
: 4/5 (46 Downloads) |
Synopsis Statistics and Machine Learning Methods for EHR Data by : Hulin Wu
The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data. Key Features: Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains. Documents the detailed experience on EHR data extraction, cleaning and preparation Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data. Considers the complete cycle of EHR data analysis. The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.
Author |
: Institute of Medicine |
Publisher |
: National Academies Press |
Total Pages |
: 437 |
Release |
: 2013-05-10 |
ISBN-10 |
: 9780309282819 |
ISBN-13 |
: 0309282810 |
Rating |
: 4/5 (19 Downloads) |
Synopsis Best Care at Lower Cost by : Institute of Medicine
America's health care system has become too complex and costly to continue business as usual. Best Care at Lower Cost explains that inefficiencies, an overwhelming amount of data, and other economic and quality barriers hinder progress in improving health and threaten the nation's economic stability and global competitiveness. According to this report, the knowledge and tools exist to put the health system on the right course to achieve continuous improvement and better quality care at a lower cost. The costs of the system's current inefficiency underscore the urgent need for a systemwide transformation. About 30 percent of health spending in 2009-roughly $750 billion-was wasted on unnecessary services, excessive administrative costs, fraud, and other problems. Moreover, inefficiencies cause needless suffering. By one estimate, roughly 75,000 deaths might have been averted in 2005 if every state had delivered care at the quality level of the best performing state. This report states that the way health care providers currently train, practice, and learn new information cannot keep pace with the flood of research discoveries and technological advances. About 75 million Americans have more than one chronic condition, requiring coordination among multiple specialists and therapies, which can increase the potential for miscommunication, misdiagnosis, potentially conflicting interventions, and dangerous drug interactions. Best Care at Lower Cost emphasizes that a better use of data is a critical element of a continuously improving health system, such as mobile technologies and electronic health records that offer significant potential to capture and share health data better. In order for this to occur, the National Coordinator for Health Information Technology, IT developers, and standard-setting organizations should ensure that these systems are robust and interoperable. Clinicians and care organizations should fully adopt these technologies, and patients should be encouraged to use tools, such as personal health information portals, to actively engage in their care. This book is a call to action that will guide health care providers; administrators; caregivers; policy makers; health professionals; federal, state, and local government agencies; private and public health organizations; and educational institutions.
Author |
: Rachel Richesson |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 415 |
Release |
: 2012-02-15 |
ISBN-10 |
: 9781848824478 |
ISBN-13 |
: 1848824475 |
Rating |
: 4/5 (78 Downloads) |
Synopsis Clinical Research Informatics by : Rachel Richesson
The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings.
Author |
: Richard Gartee |
Publisher |
: Prentice Hall |
Total Pages |
: 0 |
Release |
: 2016 |
ISBN-10 |
: 0134257502 |
ISBN-13 |
: 9780134257501 |
Rating |
: 4/5 (02 Downloads) |
Synopsis Electronic Health Records by : Richard Gartee
Resource added for the Health Information Technology program 105301.
Author |
: McHaney, Roger W. |
Publisher |
: IGI Global |
Total Pages |
: 482 |
Release |
: 2019-09-20 |
ISBN-10 |
: 9781799800484 |
ISBN-13 |
: 1799800482 |
Rating |
: 4/5 (84 Downloads) |
Synopsis Impacts of Information Technology on Patient Care and Empowerment by : McHaney, Roger W.
Modern technology has impacted healthcare and interactions between patients and healthcare providers through a variety of means including the internet, social media, mobile devices, and the internet of things. These new technologies have empowered, frustrated, educated, and confused patients by making educational materials more widely available and allowing patients to monitor their own vital signs and self-diagnose. Further analysis of these and future technologies is needed in order to provide new approaches to empowerment, reduce mistakes, and improve overall healthcare. Impacts of Information Technology on Patient Care and Empowerment is a critical scholarly resource that delves into patient access to information and the effect that access has on their relationship with healthcare providers and their health outcomes. Featuring a range of topics such as gamification, mobile computing, and risk analysis, this book is ideal for healthcare practitioners, doctors, nurses, surgeons, hospital staff, medical administrators, patient advocates, researchers, academicians, policymakers, and healthcare students.