Electrochemical Devices for Energy Storage Applications

Electrochemical Devices for Energy Storage Applications
Author :
Publisher : CRC Press
Total Pages : 300
Release :
ISBN-10 : 9781000763874
ISBN-13 : 1000763870
Rating : 4/5 (74 Downloads)

Synopsis Electrochemical Devices for Energy Storage Applications by : Mesfin A. Kebede

This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research

Electrode Materials for Energy Storage and Conversion

Electrode Materials for Energy Storage and Conversion
Author :
Publisher : CRC Press
Total Pages : 518
Release :
ISBN-10 : 9781000457865
ISBN-13 : 1000457869
Rating : 4/5 (65 Downloads)

Synopsis Electrode Materials for Energy Storage and Conversion by : Mesfin A. Kebede

This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.

New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells

New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells
Author :
Publisher : Springer Science & Business Media
Total Pages : 528
Release :
ISBN-10 : 9781402048128
ISBN-13 : 1402048122
Rating : 4/5 (28 Downloads)

Synopsis New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells by : Igor V. Barsukov

This book reviews research work on electrochemical power sources in the former Warsaw Pact countries. It explores the role carbon plays in the cathodes and anodes of power sources and reveals the latest research into the development of metal air batteries, supercapacitors, fuel cells and lithium-ion and lithium-ion polymer batteries. For the first time, a full chapter was devoted to metal-carbon composites as electrode materials of lithium-ion batteries

Electrochemical Supercapacitors for Energy Storage and Delivery

Electrochemical Supercapacitors for Energy Storage and Delivery
Author :
Publisher : CRC Press
Total Pages : 373
Release :
ISBN-10 : 9781439869901
ISBN-13 : 1439869901
Rating : 4/5 (01 Downloads)

Synopsis Electrochemical Supercapacitors for Energy Storage and Delivery by : Aiping Yu

Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage
Author :
Publisher : Springer
Total Pages : 253
Release :
ISBN-10 : 9781447156772
ISBN-13 : 1447156773
Rating : 4/5 (72 Downloads)

Synopsis Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage by : Alejandro A. Franco

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials’ atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Materials for Supercapacitor Applications

Materials for Supercapacitor Applications
Author :
Publisher : Elsevier
Total Pages : 402
Release :
ISBN-10 : 9780128198599
ISBN-13 : 0128198591
Rating : 4/5 (99 Downloads)

Synopsis Materials for Supercapacitor Applications by : M. Aulice Scibioh

Materials for Supercapacitor Applications provides a snapshot of the present status of this rapidly growing field. It covers motivations, innovations, ongoing breakthroughs in research and development, innovative materials, impacts, and perspectives, as well as the challenges and technical barriers to identifying an ideal material for practical applications. This comprehensive reference by electro-chemists explains concepts in materials selection and their unique applications based on their electro-chemical properties. Chemists, chemical and electrical engineers, material scientists, and research scholars and students interested in energy will benefit from this overview of many important reference points in understanding the materials used in supercapacitors. - Provides an overview of the formulation for new materials and how to characterize them for supercapacitor applications - Describes all the information on the available materials for supercapacitor applications - Outlines potential material characterization methods - Discusses perspectives and future directions of the field

Nanomaterials for Electrochemical Energy Storage Devices

Nanomaterials for Electrochemical Energy Storage Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 660
Release :
ISBN-10 : 9781119510048
ISBN-13 : 111951004X
Rating : 4/5 (48 Downloads)

Synopsis Nanomaterials for Electrochemical Energy Storage Devices by : Poulomi Roy

Energy storage devices are considered to be an important field of interest for researchers worldwide. Batteries and supercapacitors are therefore extensively studied and progressively evolving. The book not only emphasizes the fundamental theories, electrochemical mechanism and its computational view point, but also discusses recent developments in electrode designing based on nanomaterials, separators, fabrication of advanced devices and their performances.

Advances in Supercapacitor and Supercapattery

Advances in Supercapacitor and Supercapattery
Author :
Publisher : Elsevier
Total Pages : 414
Release :
ISBN-10 : 9780128204030
ISBN-13 : 0128204036
Rating : 4/5 (30 Downloads)

Synopsis Advances in Supercapacitor and Supercapattery by : Mohammad Khalid

Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices provides a deep insight into energy storage systems and their applications. The first two chapters cover the detailed background, fundamental charge storage mechanism and the various types of supercapacitor. The third chapter give details about the hybrid device (Supercapattery) which comprises of battery and capacitive electrode. The main advantages of Supercapattery over batteries and supercapacitor are discussed in this chapter. The preceding three chapters cover the electrode materials used for supercapattery. The electrolyte is a major part that significantly contributes to the performance of the device. Therefore, different kinds of electrolytes and their suitability are discussed in chapter 6 and 7. The book concludes with a look at the potential applications of supercapattery, challenges and future prospective. This book is beneficial for research scientists, engineers and students who are interested in the latest developments and fundamentals of energy storage mechanism and clarifies the misleading concepts in this field. Presents the three classes of energy storage devices and clarifies the difference between between pseudocapacitor and battery grade material Covers the synthesis strategies to enhance the overall performance of the supercapacitor device (including power density) Explains the energy storage mechanism based on the fundamental concept of physics and electrochemistry

Electrochemical Devices for Energy Storage Applications

Electrochemical Devices for Energy Storage Applications
Author :
Publisher : CRC Press
Total Pages : 267
Release :
ISBN-10 : 9781000763799
ISBN-13 : 100076379X
Rating : 4/5 (99 Downloads)

Synopsis Electrochemical Devices for Energy Storage Applications by : Mesfin A. Kebede

This book explores a wide range of energy storage devices, such as a lithium ion battery, sodium ion battery, magnesium ion battery and supercapacitors. Providing a comprehensive review of the current field, it also discusses the history of these technologies and introduces next-generation rechargeable batteries and supercapacitors. This book will serve as a valuable reference for researchers working with energy storage technologies across the fields of physics, chemistry, and engineering. Features: • Edited by established authorities in the field, with chapter contributions from subject area specialists • Provides a comprehensive review of field • Up to date with the latest developments and research

Electrochemical Energy Storage

Electrochemical Energy Storage
Author :
Publisher : John Wiley & Sons
Total Pages : 96
Release :
ISBN-10 : 9781118998144
ISBN-13 : 1118998146
Rating : 4/5 (44 Downloads)

Synopsis Electrochemical Energy Storage by : Jean-Marie Tarascon

The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.