Efficient Reinforcement Learning Using Gaussian Processes

Efficient Reinforcement Learning Using Gaussian Processes
Author :
Publisher : KIT Scientific Publishing
Total Pages : 226
Release :
ISBN-10 : 9783866445697
ISBN-13 : 3866445695
Rating : 4/5 (97 Downloads)

Synopsis Efficient Reinforcement Learning Using Gaussian Processes by : Marc Peter Deisenroth

This book examines Gaussian processes in both model-based reinforcement learning (RL) and inference in nonlinear dynamic systems.First, we introduce PILCO, a fully Bayesian approach for efficient RL in continuous-valued state and action spaces when no expert knowledge is available. PILCO takes model uncertainties consistently into account during long-term planning to reduce model bias. Second, we propose principled algorithms for robust filtering and smoothing in GP dynamic systems.

Gaussian Processes for Machine Learning

Gaussian Processes for Machine Learning
Author :
Publisher : MIT Press
Total Pages : 266
Release :
ISBN-10 : 9780262182539
ISBN-13 : 026218253X
Rating : 4/5 (39 Downloads)

Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains
Author :
Publisher : Springer
Total Pages : 170
Release :
ISBN-10 : 9783319011684
ISBN-13 : 3319011685
Rating : 4/5 (84 Downloads)

Synopsis TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains by : Todd Hester

This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent’s lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.

Algorithms for Reinforcement Learning

Algorithms for Reinforcement Learning
Author :
Publisher : Springer Nature
Total Pages : 89
Release :
ISBN-10 : 9783031015519
ISBN-13 : 3031015517
Rating : 4/5 (19 Downloads)

Synopsis Algorithms for Reinforcement Learning by : Csaba Grossi

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration

Artificial Intelligence and Statistics

Artificial Intelligence and Statistics
Author :
Publisher : Addison Wesley Publishing Company
Total Pages : 440
Release :
ISBN-10 : UOM:39015010876376
ISBN-13 :
Rating : 4/5 (76 Downloads)

Synopsis Artificial Intelligence and Statistics by : William A. Gale

A statistical view of uncertainty in expert systems. Knowledge, decision making, and uncertainty. Conceptual clustering and its relation to numerical taxonomy. Learning rates in supervised and unsupervised intelligent systems. Pinpoint good hypotheses with heuristics. Artificial intelligence approaches in statistics. REX review. Representing statistical computations: toward a deeper understanding. Student phase 1: a report on work in progress. Representing statistical knowledge for expert data analysis systems. Environments for supporting statistical strategy. Use of psychometric tools for knowledge acquisition: a case study. The analysis phase in development of knowledge based systems. Implementation and study of statistical strategy. Patterns in statisticalstrategy. A DIY guide to statistical strategy. An alphabet for statistician's expert systems.

Reinforcement Learning, second edition

Reinforcement Learning, second edition
Author :
Publisher : MIT Press
Total Pages : 549
Release :
ISBN-10 : 9780262352703
ISBN-13 : 0262352702
Rating : 4/5 (03 Downloads)

Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Modelling and Control of Dynamic Systems Using Gaussian Process Models

Modelling and Control of Dynamic Systems Using Gaussian Process Models
Author :
Publisher : Springer
Total Pages : 281
Release :
ISBN-10 : 9783319210216
ISBN-13 : 3319210211
Rating : 4/5 (16 Downloads)

Synopsis Modelling and Control of Dynamic Systems Using Gaussian Process Models by : Juš Kocijan

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

Bayesian Reinforcement Learning

Bayesian Reinforcement Learning
Author :
Publisher :
Total Pages : 146
Release :
ISBN-10 : 1680830880
ISBN-13 : 9781680830880
Rating : 4/5 (80 Downloads)

Synopsis Bayesian Reinforcement Learning by : Mohammad Ghavamzadeh

Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. This monograph provides the reader with an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are that it provides an elegant approach to action-selection (exploration/exploitation) as a function of the uncertainty in learning, and it provides a machinery to incorporate prior knowledge into the algorithms. Bayesian Reinforcement Learning: A Survey first discusses models and methods for Bayesian inference in the simple single-step Bandit model. It then reviews the extensive recent literature on Bayesian methods for model-based RL, where prior information can be expressed on the parameters of the Markov model. It also presents Bayesian methods for model-free RL, where priors are expressed over the value function or policy class. Bayesian Reinforcement Learning: A Survey is a comprehensive reference for students and researchers with an interest in Bayesian RL algorithms and their theoretical and empirical properties.

Reinforcement Learning and Dynamic Programming Using Function Approximators

Reinforcement Learning and Dynamic Programming Using Function Approximators
Author :
Publisher : CRC Press
Total Pages : 280
Release :
ISBN-10 : 9781439821091
ISBN-13 : 1439821097
Rating : 4/5 (91 Downloads)

Synopsis Reinforcement Learning and Dynamic Programming Using Function Approximators by : Lucian Busoniu

From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Quantitative Evaluation of Systems

Quantitative Evaluation of Systems
Author :
Publisher : Springer Nature
Total Pages : 301
Release :
ISBN-10 : 9783030598549
ISBN-13 : 3030598543
Rating : 4/5 (49 Downloads)

Synopsis Quantitative Evaluation of Systems by : Marco Gribaudo

This book constitutes the proceedings of the 17th International Conference on Quantitative Evaluation Systems, QEST 2020, held in Vienna, Austria, in August/September 2020. The 12 full papers presented together with 7 short papers were carefully reviewed and selected from 42 submissions. The papers cover topics such as classic measures involving performance and reliability, quantification of properties that are classically qualitative, such as safety, correctness, and security as well as analytic studies, diversity in the model formalisms and methodologies employed, and development of new formalisms and methodologies.