Efficient Numerical Methods for Non-local Operators

Efficient Numerical Methods for Non-local Operators
Author :
Publisher : European Mathematical Society
Total Pages : 452
Release :
ISBN-10 : 3037190914
ISBN-13 : 9783037190913
Rating : 4/5 (14 Downloads)

Synopsis Efficient Numerical Methods for Non-local Operators by : Steffen Börm

Hierarchical matrices present an efficient way of treating dense matrices that arise in the context of integral equations, elliptic partial differential equations, and control theory. While a dense $n\times n$ matrix in standard representation requires $n^2$ units of storage, a hierarchical matrix can approximate the matrix in a compact representation requiring only $O(n k \log n)$ units of storage, where $k$ is a parameter controlling the accuracy. Hierarchical matrices have been successfully applied to approximate matrices arising in the context of boundary integral methods, to construct preconditioners for partial differential equations, to evaluate matrix functions, and to solve matrix equations used in control theory. $\mathcal{H}^2$-matrices offer a refinement of hierarchical matrices: Using a multilevel representation of submatrices, the efficiency can be significantly improved, particularly for large problems. This book gives an introduction to the basic concepts and presents a general framework that can be used to analyze the complexity and accuracy of $\mathcal{H}^2$-matrix techniques. Starting from basic ideas of numerical linear algebra and numerical analysis, the theory is developed in a straightforward and systematic way, accessible to advanced students and researchers in numerical mathematics and scientific computing. Special techniques are required only in isolated sections, e.g., for certain classes of model problems.

Tensor Numerical Methods in Scientific Computing

Tensor Numerical Methods in Scientific Computing
Author :
Publisher : Walter de Gruyter GmbH & Co KG
Total Pages : 382
Release :
ISBN-10 : 9783110365917
ISBN-13 : 311036591X
Rating : 4/5 (17 Downloads)

Synopsis Tensor Numerical Methods in Scientific Computing by : Boris N. Khoromskij

The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green’s and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations

Hierarchical Matrices: Algorithms and Analysis

Hierarchical Matrices: Algorithms and Analysis
Author :
Publisher : Springer
Total Pages : 532
Release :
ISBN-10 : 9783662473245
ISBN-13 : 3662473240
Rating : 4/5 (45 Downloads)

Synopsis Hierarchical Matrices: Algorithms and Analysis by : Wolfgang Hackbusch

This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

Fast Numerical Methods for Non-local Operators

Fast Numerical Methods for Non-local Operators
Author :
Publisher :
Total Pages : 42
Release :
ISBN-10 : OCLC:500096804
ISBN-13 :
Rating : 4/5 (04 Downloads)

Synopsis Fast Numerical Methods for Non-local Operators by : Mathematisches Forschungsinstitut Oberwolfach

Tensor Spaces and Numerical Tensor Calculus

Tensor Spaces and Numerical Tensor Calculus
Author :
Publisher : Springer Nature
Total Pages : 605
Release :
ISBN-10 : 9783030355548
ISBN-13 : 3030355543
Rating : 4/5 (48 Downloads)

Synopsis Tensor Spaces and Numerical Tensor Calculus by : Wolfgang Hackbusch

Special numerical techniques are already needed to deal with n × n matrices for large n. Tensor data are of size n × n ×...× n=nd, where nd exceeds the computer memory by far. They appear for problems of high spatial dimensions. Since standard methods fail, a particular tensor calculus is needed to treat such problems. This monograph describes the methods by which tensors can be practically treated and shows how numerical operations can be performed. Applications include problems from quantum chemistry, approximation of multivariate functions, solution of partial differential equations, for example with stochastic coefficients, and more. In addition to containing corrections of the unavoidable misprints, this revised second edition includes new parts ranging from single additional statements to new subchapters. The book is mainly addressed to numerical mathematicians and researchers working with high-dimensional data. It also touches problems related to Geometric Algebra.

Iterative Solution of Large Sparse Systems of Equations

Iterative Solution of Large Sparse Systems of Equations
Author :
Publisher : Springer
Total Pages : 528
Release :
ISBN-10 : 9783319284835
ISBN-13 : 3319284835
Rating : 4/5 (35 Downloads)

Synopsis Iterative Solution of Large Sparse Systems of Equations by : Wolfgang Hackbusch

In the second edition of this classic monograph, complete with four new chapters and updated references, readers will now have access to content describing and analysing classical and modern methods with emphasis on the algebraic structure of linear iteration, which is usually ignored in other literature. The necessary amount of work increases dramatically with the size of systems, so one has to search for algorithms that most efficiently and accurately solve systems of, e.g., several million equations. The choice of algorithms depends on the special properties the matrices in practice have. An important class of large systems arises from the discretization of partial differential equations. In this case, the matrices are sparse (i.e., they contain mostly zeroes) and well-suited to iterative algorithms. The first edition of this book grew out of a series of lectures given by the author at the Christian-Albrecht University of Kiel to students of mathematics. The second edition includes quite novel approaches.

Non-Local Cell Adhesion Models

Non-Local Cell Adhesion Models
Author :
Publisher : Springer Nature
Total Pages : 152
Release :
ISBN-10 : 9783030671112
ISBN-13 : 3030671119
Rating : 4/5 (12 Downloads)

Synopsis Non-Local Cell Adhesion Models by : Andreas Buttenschön

This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.

Nonlocal Modeling, Analysis, and Computation

Nonlocal Modeling, Analysis, and Computation
Author :
Publisher : SIAM
Total Pages : 181
Release :
ISBN-10 : 9781611975611
ISBN-13 : 1611975611
Rating : 4/5 (11 Downloads)

Synopsis Nonlocal Modeling, Analysis, and Computation by : Qiang Du

Studies of complexity, singularity, and anomaly using nonlocal continuum models are steadily gaining popularity. This monograph provides an introduction to basic analytical, computational, and modeling issues and to some of the latest developments in these areas. Nonlocal Modeling, Analysis, and Computation includes motivational examples of nonlocal models, basic building blocks of nonlocal vector calculus, elements of theory for well-posedness and nonlocal spaces, connections to and coupling with local models, convergence and compatibility of numerical approximations, and various applications, such as nonlocal dynamics of anomalous diffusion and nonlocal peridynamic models of elasticity and fracture mechanics. A particular focus is on nonlocal systems with a finite range of interaction to illustrate their connection to local partial differential equations and fractional PDEs. These models are designed to represent nonlocal interactions explicitly and to remain valid for complex systems involving possible singular solutions and they have the potential to be alternatives for as well as bridges to existing models. The author discusses ongoing studies of nonlocal models to encourage the discovery of new mathematical theory for nonlocal continuum models and offer new perspectives on traditional models, analytical techniques, and algorithms.