Dynamics of Microelectromechanical Systems

Dynamics of Microelectromechanical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 411
Release :
ISBN-10 : 9780387681955
ISBN-13 : 0387681957
Rating : 4/5 (55 Downloads)

Synopsis Dynamics of Microelectromechanical Systems by : Nicolae Lobontiu

Here is a textbook for senior undergraduate and graduate level students that offers a novel and systematic look into the dynamics of MEMS. It includes numerous solved examples together with the proposed problems. The material to be found here will also be of interest to researchers with a non-mechanical background. The book focuses on the mechanical domain, specifically the dynamic sub-domain, and provides an in-depth treatment of problems that involve reliable modeling, analysis and design.

Analysis and Design Principles of MEMS Devices

Analysis and Design Principles of MEMS Devices
Author :
Publisher : Elsevier
Total Pages : 327
Release :
ISBN-10 : 9780080455624
ISBN-13 : 008045562X
Rating : 4/5 (24 Downloads)

Synopsis Analysis and Design Principles of MEMS Devices by : Minhang Bao

Sensors and actuators are now part of our everyday life and appear in many appliances, such as cars, vending machines and washing machines. MEMS (Micro Electro Mechanical Systems) are micro systems consisting of micro mechanical sensors, actuators and micro electronic circuits. A variety of MEMS devices have been developed and many mass produced, but the information on these is widely dispersed in the literature. This book presents the analysis and design principles of MEMS devices. The information is comprehensive, focusing on microdynamics, such as the mechanics of beam and diaphragm structures, air damping and its effect on the motion of mechanical structures. Using practical examples, the author examines problems associated with analysis and design, and solutions are included at the back of the book. The ideal advanced level textbook for graduates, Analysis and Design Principles of MEMS Devices is a suitable source of reference for researchers and engineers in the field.* Presents the analysis and design principles of MEMS devices more systematically than ever before.* Includes the theories essential for the analysis and design of MEMS includes the dynamics of micro mechanical structures* A problem section is included at the end of each chapter with answers provided at the end of the book.

Microsystems Dynamics

Microsystems Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 222
Release :
ISBN-10 : 9789048197019
ISBN-13 : 9048197015
Rating : 4/5 (19 Downloads)

Synopsis Microsystems Dynamics by : Vytautas Ostasevicius

In recent years microelectromechanical systems (MEMS) have emerged as a new technology with enormous application potential. MEMS manufacturing techniques are essentially the same as those used in the semiconductor industry, therefore they can be produced in large quantities at low cost. The added benefits of lightweight, miniature size and low energy consumption make MEMS commercialization very attractive. Modeling and simulation is an indispensable tool in the process of studying these new dynamic phenomena, development of new microdevices and improvement of the existing designs. MEMS technology is inherently multidisciplinary since operation of microdevices involves interaction of several energy domains of different physical nature, for example, mechanical, fluidic and electric forces. Dynamic behavior of contact-type electrostatic microactuators, such as a microswitches, is determined by nonlinear fluidic-structural, electrostatic-structural and vibro-impact interactions. The latter is particularly important: Therefore it is crucial to develop accurate computational models for numerical analysis of the aforementioned interactions in order to better understand coupled-field effects, study important system dynamic characteristics and thereby formulate guidelines for the development of more reliable microdevices with enhanced performance, reliability and functionality.

MEMS Linear and Nonlinear Statics and Dynamics

MEMS Linear and Nonlinear Statics and Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 463
Release :
ISBN-10 : 9781441960207
ISBN-13 : 1441960201
Rating : 4/5 (07 Downloads)

Synopsis MEMS Linear and Nonlinear Statics and Dynamics by : Mohammad I. Younis

MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of numerous MEMS devices and structures that require static or dynamic modeling Provides code for programs in Matlab, Mathematica, and ANSYS for simulating the behavior of MEMS structures Provides real world problems related to the dynamics of MEMS such as dynamics of electrostatically actuated devices, stiction and adhesion of microbeams due to electrostatic and capillary forces MEMS Linear and Nonlinear Statics and Dynamics is an ideal volume for researchers and engineers working in MEMS design and fabrication.

Principles of Microelectromechanical Systems

Principles of Microelectromechanical Systems
Author :
Publisher : John Wiley & Sons
Total Pages : 552
Release :
ISBN-10 : 9781118102244
ISBN-13 : 111810224X
Rating : 4/5 (44 Downloads)

Synopsis Principles of Microelectromechanical Systems by : Ki Bang Lee

The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.

Advances in Multiphysics Simulation and Experimental Testing of Mems

Advances in Multiphysics Simulation and Experimental Testing of Mems
Author :
Publisher : Imperial College Press
Total Pages : 504
Release :
ISBN-10 : 9781860948633
ISBN-13 : 1860948634
Rating : 4/5 (33 Downloads)

Synopsis Advances in Multiphysics Simulation and Experimental Testing of Mems by : Attilio Frangi

This volume takes a much needed multiphysical approach to the numerical and experimental evaluation of the mechanical properties of MEMS and NEMS. The contributed chapters present many of the most recent developments in fields ranging from microfluids and damping to structural analysis, topology optimization and nanoscale simulations. The book responds to a growing need emerging in academia and industry to merge different areas of expertise towards a unified design and analysis of MEMS and NEMS.

Silicon Carbide Micro Electromechanical Systems for Harsh Environments

Silicon Carbide Micro Electromechanical Systems for Harsh Environments
Author :
Publisher : Imperial College Press
Total Pages : 193
Release :
ISBN-10 : 9781860949098
ISBN-13 : 1860949096
Rating : 4/5 (98 Downloads)

Synopsis Silicon Carbide Micro Electromechanical Systems for Harsh Environments by : Rebecca Cheung

This unique book describes the science and technology of silicon carbide (SiC) microelectromechanical systems (MEMS), from the creation of SiC material to the formation of final system, through various expert contributions by several leading key figures in the field. The book contains high-quality up-to-date scientific information concerning SiC MEMS for harsh environments summarized concisely for students, academics, engineers and researchers in the field of SiC MEMS. This is the only book that addresses in a comprehensive manner the main advantages of SiC as a MEMS material for applications in high temperature and harsh environments, as well as approaches to the relevant technologies, with a view progressing towards the final product. Sample Chapter(s). Chapter 1: Introduction to Silicon Carbide (SIC) Microelectromechanical Systems (MEMS) (800 KB). Contents: Introduction to Silicon Carbide (SiC) Microelectromechanical Systems (MEMS) (R Cheung); Deposition Techniques for SiC MEMS (C A Zorman et al.); Review of Issues Pertaining to the Development of Contacts to Silicon Carbide: 1996OCo2002 (L M Porter & F A Mohammad); Dry Etching of SiC (S J Pearton); Design, Performance and Applications of SiC MEMS (S Zappe). Readership: Academic researchers in MEMS and industrial engineers engaged in SiC MEMS research."

Mechanics of Microsystems

Mechanics of Microsystems
Author :
Publisher : John Wiley & Sons
Total Pages : 332
Release :
ISBN-10 : 9781119053835
ISBN-13 : 1119053838
Rating : 4/5 (35 Downloads)

Synopsis Mechanics of Microsystems by : Alberto Corigliano

Mechanics of Microsystems Alberto Corigliano, Raffaele Ardito, Claudia Comi, Attilio Frangi, Aldo Ghisi and Stefano Mariani, Politecnico di Milano, Italy A mechanical approach to microsystems, covering fundamental concepts including MEMS design, modelling and reliability Mechanics of Microsystems takes a mechanical approach to microsystems and covers fundamental concepts including MEMS design, modelling and reliability. The book examines the mechanical behaviour of microsystems from a ‘design for reliability’ point of view and includes examples of applications in industry. Mechanics of Microsystems is divided into two main parts. The first part recalls basic knowledge related to the microsystems behaviour and offers an overview on microsystems and fundamental design and modelling tools from a mechanical point of view, together with many practical examples of real microsystems. The second part covers the mechanical characterization of materials at the micro-scale and considers the most important reliability issues (fracture, fatigue, stiction, damping phenomena, etc) which are fundamental to fabricate a real working device. Key features: Provides an overview of MEMS, with special focus on mechanical-based Microsystems and reliability issues. Includes examples of applications in industry. Accompanied by a website hosting supplementary material. The book provides essential reading for researchers and practitioners working with MEMS, as well as graduate students in mechanical, materials and electrical engineering.

Microfluid Mechanics

Microfluid Mechanics
Author :
Publisher : McGraw Hill Professional
Total Pages : 369
Release :
ISBN-10 : 9780071588881
ISBN-13 : 0071588884
Rating : 4/5 (81 Downloads)

Synopsis Microfluid Mechanics by : William Liou

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The rapid progress in fabricating and utilizing microelectromechanical (MEMS) systems during the last decade is not matched by corresponding understanding of the unconventional fluid flow involved in the operation and manufacture of these small devices. Providing such understanding is crucial to designing, optimizing, fabricating and operating improved MEMS devices. Microfluid Mechanics: Principles and Modeling is a rigorous reference that begins with the fundamental principles governing microfluid mechanics and progresses to more complex mathematical models, which will allow research engineers to better measure and predict reactions of gaseous and liquids in microenvironments.

Mems for Biomedical Applications

Mems for Biomedical Applications
Author :
Publisher : Elsevier
Total Pages : 511
Release :
ISBN-10 : 9780857096272
ISBN-13 : 0857096273
Rating : 4/5 (72 Downloads)

Synopsis Mems for Biomedical Applications by : Shekhar Bhansali

The application of Micro Electro Mechanical Systems (MEMS) in the biomedical field is leading to a new generation of medical devices. MEMS for biomedical applications reviews the wealth of recent research on fabrication technologies and applications of this exciting technology.The book is divided into four parts: Part one introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms. Part two describes applications of MEMS for biomedical sensing and diagnostic applications. MEMS for in vivo sensing and electrical impedance spectroscopy are investigated, along with ultrasonic transducers, and lab-on-chip devices. MEMS for tissue engineering and clinical applications are the focus of part three, which considers cell culture and tissue scaffolding devices, BioMEMS for drug delivery and minimally invasive medical procedures. Finally, part four reviews emerging biomedical applications of MEMS, from implantable neuroprobes and ocular implants to cellular microinjection and hybrid MEMS.With its distinguished editors and international team of expert contributors, MEMS for biomedical applications provides an authoritative review for scientists and manufacturers involved in the design and development of medical devices as well as clinicians using this important technology. - Reviews the wealth of recent research on fabrication technologies and applications of Micro Electro Mechanical Systems (MEMS) in the biomedical field - Introduces the fundamentals of MEMS for biomedical applications, exploring the microfabrication of polymers and reviewing sensor and actuator mechanisms - Considers MEMS for biomedical sensing and diagnostic applications, along with MEMS for in vivo sensing and electrical impedance spectroscopy