Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience
Author :
Publisher : MIT Press
Total Pages : 459
Release :
ISBN-10 : 9780262514200
ISBN-13 : 0262514206
Rating : 4/5 (00 Downloads)

Synopsis Dynamical Systems in Neuroscience by : Eugene M. Izhikevich

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.

Neuronal Dynamics

Neuronal Dynamics
Author :
Publisher : Cambridge University Press
Total Pages : 591
Release :
ISBN-10 : 9781107060838
ISBN-13 : 1107060834
Rating : 4/5 (38 Downloads)

Synopsis Neuronal Dynamics by : Wulfram Gerstner

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Dynamic Neuroscience

Dynamic Neuroscience
Author :
Publisher : Springer
Total Pages : 337
Release :
ISBN-10 : 9783319719764
ISBN-13 : 3319719769
Rating : 4/5 (64 Downloads)

Synopsis Dynamic Neuroscience by : Zhe Chen

This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.

Principles of Brain Dynamics

Principles of Brain Dynamics
Author :
Publisher : MIT Press
Total Pages : 371
Release :
ISBN-10 : 9780262549905
ISBN-13 : 0262549905
Rating : 4/5 (05 Downloads)

Synopsis Principles of Brain Dynamics by : Mikhail I. Rabinovich

Experimental and theoretical approaches to global brain dynamics that draw on the latest research in the field. The consideration of time or dynamics is fundamental for all aspects of mental activity—perception, cognition, and emotion—because the main feature of brain activity is the continuous change of the underlying brain states even in a constant environment. The application of nonlinear dynamics to the study of brain activity began to flourish in the 1990s when combined with empirical observations from modern morphological and physiological observations. This book offers perspectives on brain dynamics that draw on the latest advances in research in the field. It includes contributions from both theoreticians and experimentalists, offering an eclectic treatment of fundamental issues. Topics addressed range from experimental and computational approaches to transient brain dynamics to the free-energy principle as a global brain theory. The book concludes with a short but rigorous guide to modern nonlinear dynamics and their application to neural dynamics.

Dynamic Patterns

Dynamic Patterns
Author :
Publisher : MIT Press
Total Pages : 368
Release :
ISBN-10 : 0262611317
ISBN-13 : 9780262611312
Rating : 4/5 (17 Downloads)

Synopsis Dynamic Patterns by : J. A. Scott Kelso

foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.

Dynamic Thinking

Dynamic Thinking
Author :
Publisher : Oxford University Press
Total Pages : 421
Release :
ISBN-10 : 9780199300563
ISBN-13 : 0199300569
Rating : 4/5 (63 Downloads)

Synopsis Dynamic Thinking by : Gregor Schöner

"This book describes a new theoretical approach--Dynamic Field Theory (DFT)--that explains how people think and act"--

Neural Engineering

Neural Engineering
Author :
Publisher : MIT Press
Total Pages : 384
Release :
ISBN-10 : 0262550601
ISBN-13 : 9780262550604
Rating : 4/5 (01 Downloads)

Synopsis Neural Engineering by : Chris Eliasmith

A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.

An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics
Author :
Publisher : Springer
Total Pages : 445
Release :
ISBN-10 : 9783319511719
ISBN-13 : 3319511718
Rating : 4/5 (19 Downloads)

Synopsis An Introduction to Modeling Neuronal Dynamics by : Christoph Börgers

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.

Brain Dynamics

Brain Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 331
Release :
ISBN-10 : 9783540752387
ISBN-13 : 3540752382
Rating : 4/5 (87 Downloads)

Synopsis Brain Dynamics by : Hermann Haken

This is an excellent introduction for graduate students and nonspecialists to the field of mathematical and computational neurosciences. The book approaches the subject via pulsed-coupled neural networks, which have at their core the lighthouse and integrate-and-fire models. These allow for highly flexible modeling of realistic synaptic activity, synchronization and spatio-temporal pattern formation. The more advanced pulse-averaged equations are discussed.

Computational Neuroscience: Cortical Dynamics

Computational Neuroscience: Cortical Dynamics
Author :
Publisher : Springer Science & Business Media
Total Pages : 169
Release :
ISBN-10 : 9783540225669
ISBN-13 : 3540225668
Rating : 4/5 (69 Downloads)

Synopsis Computational Neuroscience: Cortical Dynamics by : Péter Érdi

This book presents thoroughly revised tutorial papers based on lectures given by leading researchers at the 8th International Summer School on Neural Networks in Erice, Italy, in October/November 2003. The eight tutorial papers presented provide competent coverage of the field of cortical dynamics, consolidating recent theoretical and experimental results on the processing, transmission, and imprinting of information in the brain as well as on important functions of the cortical area, such as cortical rhythms, cortical neural plasticity, and their structural basis and functional significance. The book is divided in two topical sections on fundamentals of cortical dynamics and mathematical models of cortical dynamics.