Dynamic Equations on Time Scales

Dynamic Equations on Time Scales
Author :
Publisher : Springer Science & Business Media
Total Pages : 365
Release :
ISBN-10 : 9781461202011
ISBN-13 : 1461202019
Rating : 4/5 (11 Downloads)

Synopsis Dynamic Equations on Time Scales by : Martin Bohner

On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

Advances in Dynamic Equations on Time Scales

Advances in Dynamic Equations on Time Scales
Author :
Publisher : Springer Science & Business Media
Total Pages : 354
Release :
ISBN-10 : 9780817682309
ISBN-13 : 0817682309
Rating : 4/5 (09 Downloads)

Synopsis Advances in Dynamic Equations on Time Scales by : Martin Bohner

Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Advances in Dynamic Equations on Time Scales

Advances in Dynamic Equations on Time Scales
Author :
Publisher : Springer Science & Business Media
Total Pages : 364
Release :
ISBN-10 : 0817642935
ISBN-13 : 9780817642938
Rating : 4/5 (35 Downloads)

Synopsis Advances in Dynamic Equations on Time Scales by : Martin Bohner

Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Stability Theory for Dynamic Equations on Time Scales

Stability Theory for Dynamic Equations on Time Scales
Author :
Publisher : Birkhäuser
Total Pages : 233
Release :
ISBN-10 : 9783319422138
ISBN-13 : 3319422138
Rating : 4/5 (38 Downloads)

Synopsis Stability Theory for Dynamic Equations on Time Scales by : Anatoly A. Martynyuk

This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.

Functional Dynamic Equations on Time Scales

Functional Dynamic Equations on Time Scales
Author :
Publisher : Springer
Total Pages : 886
Release :
ISBN-10 : 9783030154202
ISBN-13 : 3030154203
Rating : 4/5 (02 Downloads)

Synopsis Functional Dynamic Equations on Time Scales by : Svetlin G. Georgiev

This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.

Conformable Dynamic Equations on Time Scales

Conformable Dynamic Equations on Time Scales
Author :
Publisher : CRC Press
Total Pages : 347
Release :
ISBN-10 : 9781000093933
ISBN-13 : 100009393X
Rating : 4/5 (33 Downloads)

Synopsis Conformable Dynamic Equations on Time Scales by : Douglas R. Anderson

The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L’Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.

Dynamic Inequalities On Time Scales

Dynamic Inequalities On Time Scales
Author :
Publisher : Springer
Total Pages : 264
Release :
ISBN-10 : 9783319110028
ISBN-13 : 3319110020
Rating : 4/5 (28 Downloads)

Synopsis Dynamic Inequalities On Time Scales by : Ravi Agarwal

This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.

Multiple Time Scales

Multiple Time Scales
Author :
Publisher : Academic Press
Total Pages : 457
Release :
ISBN-10 : 9781483257563
ISBN-13 : 1483257568
Rating : 4/5 (63 Downloads)

Synopsis Multiple Time Scales by : Jeremiah U. Brackbill

Multiple Time Scales presents various numerical methods for solving multiple-time-scale problems. The selection first elaborates on considerations on solving problems with multiple scales; problems with different time scales; and nonlinear normal-mode initialization of numerical weather prediction models. Discussions focus on analysis of observations, nonlinear analysis, systems of ordinary differential equations, and numerical methods for problems with multiple scales. The text then examines the diffusion-synthetic acceleration of transport iterations, with application to a radiation hydrodynamics problem and implicit methods in combustion and chemical kinetics modeling. The publication ponders on molecular dynamics and Monte Carlo simulations of rare events; direct implicit plasma simulation; orbit averaging and subcycling in particle simulation of plasmas; and hybrid and collisional implicit plasma simulation models. Topics include basic moment method, electron subcycling, gyroaveraged particle simulation, and the electromagnetic direct implicit method. The selection is a valuable reference for researchers interested in pursuing further research on the use of numerical methods in solving multiple-time-scale problems.

Dynamic Geometry on Time Scales

Dynamic Geometry on Time Scales
Author :
Publisher : CRC Press
Total Pages : 0
Release :
ISBN-10 : 1032070803
ISBN-13 : 9781032070803
Rating : 4/5 (03 Downloads)

Synopsis Dynamic Geometry on Time Scales by : Svetlin Georgiev Georgiev

This book provides the first and second fundamental forms of surfaces on time scales. They are introduced minimal surfaces and geodesics on time scales. In the book are studied the covaraint derivatives on time scales, pseudo-spherical surfaces and \sigma_1, \sigma_2 manifolds on time scales.

Multiple Time Scale Dynamics

Multiple Time Scale Dynamics
Author :
Publisher : Springer
Total Pages : 816
Release :
ISBN-10 : 9783319123165
ISBN-13 : 3319123165
Rating : 4/5 (65 Downloads)

Synopsis Multiple Time Scale Dynamics by : Christian Kuehn

This book provides an introduction to dynamical systems with multiple time scales. The approach it takes is to provide an overview of key areas, particularly topics that are less available in the introductory form. The broad range of topics included makes it accessible for students and researchers new to the field to gain a quick and thorough overview. The first of its kind, this book merges a wide variety of different mathematical techniques into a more unified framework. The book is highly illustrated with many examples and exercises and an extensive bibliography. The target audience of this book are senior undergraduates, graduate students as well as researchers interested in using the multiple time scale dynamics theory in nonlinear science, either from a theoretical or a mathematical modeling perspective.