High-Entropy Materials: Theory, Experiments, and Applications

High-Entropy Materials: Theory, Experiments, and Applications
Author :
Publisher : Springer Nature
Total Pages : 776
Release :
ISBN-10 : 9783030776411
ISBN-13 : 3030776417
Rating : 4/5 (11 Downloads)

Synopsis High-Entropy Materials: Theory, Experiments, and Applications by : Jamieson Brechtl

This book discusses fundamental studies involving the history, modelling, simulation, experimental work, and applications on high-entropy materials. Topics include data-driven and machine-learning approaches, additive-manufacturing techniques, computational and analytical methods, such as density functional theory and multifractal analysis, mechanical behavior, high-throughput methods, and irradiation effects. The types of high-entropy materials consist of alloys, oxides, and ceramics. The book then concludes with a discussion on potential future applications of these novel materials.

A review on high-throughput development of high-entropy alloys by combinatorial methods

A review on high-throughput development of high-entropy alloys by combinatorial methods
Author :
Publisher : OAE Publishing Inc.
Total Pages : 45
Release :
ISBN-10 :
ISBN-13 :
Rating : 4/5 ( Downloads)

Synopsis A review on high-throughput development of high-entropy alloys by combinatorial methods by : Shahryar Mooraj

High-entropy alloys (HEAs) are an emerging class of alloys with multi-principal elements that greatly expands the compositional space for advanced alloy design. Besides chemistry, processing history can also affect the phase and microstructure formation in HEAs. The number of possible alloy compositions and processing paths gives rise to enormous material design space, which makes it challenging to explore by traditional trial-and-error approaches. This review highlights the progress in combinatorial high-throughput studies towards rapid prediction, manufacturing, and characterization of promising HEA compositions. This review begins with an introduction to HEAs and their unique properties. Then, this review describes high-throughput computational methods such as machine learning that can predict desired alloy compositions from hundreds or even thousands of candidates. The next section presents advances in combinatorial synthesis of material libraries by additive manufacturing for efficient development of high-performance HEAs at bulk scale. The final section discusses the high-throughput characterization techniques used to accelerate the material property measurements for systematic understanding of the composition-processing-structure-property relationships in combinatorial HEA libraries.

High-Entropy Alloys

High-Entropy Alloys
Author :
Publisher : Elsevier
Total Pages : 596
Release :
ISBN-10 : 9780443221415
ISBN-13 : 0443221413
Rating : 4/5 (15 Downloads)

Synopsis High-Entropy Alloys by : Ghulam Yasin

High-Entropy Alloys: Design, Manufacturing, and Emerging Applications presents cutting-edge advances in the field of these materials, covering their mechanics, methods of manufacturing, and applications, all while emphasizing the link between their structure/microstructure and functional properties. The book starts with a section on the fundamentals of high-entropy alloys (HEAs), with chapters discussing their thermodynamics, subgroups (transition metal; refractory; ceramics; metallic glasses and more), physical metallurgy, and microstructural characterization. The next section features chapters which look at manufacturing processes of HEAs, such as liquid metallurgy synthesis, in-situ synthesis, additive manufacturing, machine learning, friction stir welding, and fabrication of coatings for HEAs. The final section of the book covers applications of these materials, including their use as irradiation-resistant structural materials, catalyst materials, electrode materials, HEAs for solid hydrogen storage, and more. The book is a key resource for academic researchers, grad students, and industry professionals working with HEAs across a range of disciplines and applications including aerospace, functional materials, catalyst materials, gas storage, sensing, super-conducting materials, biomedical, civil engineering, energy storage, and energy materials. - Covers the mechanics, manufacturing, and applications of functionally-oriented high-entropy alloys (HEAs) - Discusses the metallurgical composition of HEAs, their microstructural characterization, thermal stability, and how to manufacture them via powder metallurgy, additive manufacturing, and friction stir welding - Reviews applications of HEAs such as for irradiation-resistant structural materials, in biomedical settings, as catalyst materials, for solid hydrogen storage, and more

Advances in Engineering Materials

Advances in Engineering Materials
Author :
Publisher : Springer Nature
Total Pages : 672
Release :
ISBN-10 : 9789813360297
ISBN-13 : 9813360291
Rating : 4/5 (97 Downloads)

Synopsis Advances in Engineering Materials by : Bhupendra Prakash Sharma

This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2020). This book, in particular, focuses on characterizing materials using novel techniques. It covers a variety of advanced materials, viz. composites, coatings, nanomaterials, materials for fuel cells, biomaterials among others. The book also discusses advanced characterization techniques like X-ray photoelectron, UV spectroscopy, scanning electron, atomic power, transmission electron and laser confocal scanning fluorescence microscopy, and gel electrophoresis chromatography. This book gives the readers an insight into advanced material processes and characterizations with special emphasis on nanotechnology.

High-Entropy Materials

High-Entropy Materials
Author :
Publisher : CRC Press
Total Pages : 164
Release :
ISBN-10 : 9781000912876
ISBN-13 : 1000912876
Rating : 4/5 (76 Downloads)

Synopsis High-Entropy Materials by : Yong Zhang

Research in the field of high-entropy materials is advancing rapidly. High-Entropy Materials: Advances and Applications focuses on materials discovered using the high-entropy alloys (HEA) strategy. It discusses various types of high-entropy materials, such as face-centered cubic (FCC) and body-centered cubic (BCC) HEAs, films and coatings, fibers, and powders and hard-cemented carbides, along with current research status and applications: • Describes, compositions and processing of high-entropy materials. • Summarizes industrially valuable alloys found in high-entropy materials that hold promise for promotion and application. • Explains how high-entropy materials can be used in many fields and can outperform traditional materials. This book is aimed at researchers, advanced students, and academics in materials science and engineering and related disciplines.

High-Entropy Materials

High-Entropy Materials
Author :
Publisher : John Wiley & Sons
Total Pages : 277
Release :
ISBN-10 : 9783527350353
ISBN-13 : 3527350357
Rating : 4/5 (53 Downloads)

Synopsis High-Entropy Materials by : Huimin Xiang

Significant update of knowledge in the field of high-entropy materials, including promising new high-entropy ceramics High-Entropy Materials provides information on state-of-the-art development in the field of high-entropy materials, including high-entropy alloys, high-entropy ceramics, and a variety of their applications, covering many core topics to provide a thorough and detailed overview of the subject. The book also thoroughly explores the applications of high-entropy materials in various areas, such as EBC/TBC coating, superhard and wear resistance coating, nuclear energy, batteries, catalysts, thermoelectric, supercapacitors, biocompatible structure, and microelectronics. In High-Entropy Materials, readers can expect to find specific information on: Basics of high entropy materials, structural features and thermodynamics of high-entropy materials, and theoretical design in high-entropy materials Synthesis and processing of high-entropy materials and characterization of high-entropy materials, as well as their mechanical and functional properties Challenges and future directions of high-entropy materials, a relatively new type of material that has been in development only since the early 2000s How high-entropy materials are a horizon-broadening class of materials that can significantly further humanity’s pursuit of progress Focusing on the fundamentals and developments of high-entropy alloys and ceramics as well as on their microstructure and properties for a wide range of applications, High-Entropy Materials is an essential resource on the subject for materials scientists, metallurgists, mechanical engineers, and professionals in the aerospace industries.

High Entropy Alloys

High Entropy Alloys
Author :
Publisher : Springer Nature
Total Pages : 319
Release :
ISBN-10 : 9789819971732
ISBN-13 : 981997173X
Rating : 4/5 (32 Downloads)

Synopsis High Entropy Alloys by : Saurabh S. Nene

High Entropy Alloys

High Entropy Alloys
Author :
Publisher : CRC Press
Total Pages : 759
Release :
ISBN-10 : 9781000046830
ISBN-13 : 1000046834
Rating : 4/5 (30 Downloads)

Synopsis High Entropy Alloys by : T.S. Srivatsan

This book provides a cohesive overview of innovations, advances in processing and characterization, and applications for high entropy alloys (HEAs) in performance-critical and non-performance-critical sectors. It covers manufacturing and processing, advanced characterization and analysis techniques, and evaluation of mechanical and physical properties. With chapters authored by a team of internationally renowned experts, the volume includes discussions on high entropy thermoelectric materials, corrosion and thermal behavior of HEAs, improving fracture resistance, fatigue properties and high tensile strength of HEAs, HEA films, and more. This work will be of interest to academics, scientists, engineers, technologists, and entrepreneurs working in the field of materials and metals development for advanced applications. Features Addresses a broad spectrum of HEAs and related aspects, including manufacturing, processing, characterization, and properties Emphasizes the application of HEAs Aimed at researchers, engineers, and scientists working to develop materials for advanced applications T.S. Srivatsan, PhD, Professor of Materials Science and Engineering in the Department of Mechanical Engineering at the University of Akron (Ohio, USA), earned his MS in Aerospace Engineering in 1981 and his PhD in Mechanical Engineering in 1984 from the Georgia Institute of Technology (USA). He has authored or edited 65 books, delivered over 200 technical presentations, and authored or co-authored more than 700 archival publications in journals, book chapters, book reviews, proceedings of conferences, and technical reports. His RG score is 45 with a h-index of 53 and Google Scholar citations of 9000, ranking him to be among the top 2% of researchers in the world. He is a Fellow of (i) the American Society for Materials International, (ii) the American Society of Mechanical Engineers, and (iii) the American Association for Advancement of Science. Manoj Gupta, PhD, is Associate Professor of Materials at NUS, Singapore. He is a former Head of Materials Division of the Mechanical Engineering Department and Director Designate of Materials Science and Engineering Initiative at NUS, Singapore. In August 2017, he was highlighted among the Top 1% Scientists of the World by the Universal Scientific Education and Research Network and in the Top 2.5% among scientists as per ResearchGate. In 2018, he was announced as World Academy Championship Winner in the area of Biomedical Sciences by the International Agency for Standards and Ratings. A multiple award winner, he actively collaborates/visits as an invited researcher and visiting and chair professor in Japan, France, Saudi Arabia, Qatar, China, the United States, and India.

Diffusion in Crystalline Solids

Diffusion in Crystalline Solids
Author :
Publisher : Academic Press
Total Pages : 503
Release :
ISBN-10 : 9780323140300
ISBN-13 : 0323140300
Rating : 4/5 (00 Downloads)

Synopsis Diffusion in Crystalline Solids by : G E Murch

Diffusion in Crystalline Solids addresses some of the most active areas of research on diffusion in crystalline solids. Topics covered include measurement of tracer diffusion coefficients in solids, diffusion in silicon and germanium, atom transport in oxides of the fluorite structure, tracer diffusion in concentrated alloys, diffusion in dislocations, grain boundary diffusion mechanisms in metals, and the use of the Monte Carlo Method to simulate diffusion kinetics. This book is made up of eight chapters and begins with an introduction to the measurement of diffusion coefficients with radioisotopes. The following three chapters consider diffusion in materials of substantial technological importance such as silicon and germanium. Atomic transport in oxides of the fluorite structure is described, and diffusion in concentrated alloys, including intermetallic compounds, is analyzed. The next two chapters delve into diffusion along short-circuiting paths, focusing on the effect of diffusion down dislocations on the form of the tracer concentration profile. The book also discusses the mechanisms of diffusion in grain boundaries in metals by invoking considerable work done on grain-boundary structure. The last two chapters are concerned with computer simulation, paying particular attention to machine calculations and the Monte Carlo method. The book concludes by exploring the fundamental atomic migration process and presenting some state-of-the-art calculations for defect energies and the topology of the saddle surface. Students and researchers of material science will find this book extremely useful.