Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations

Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 775
Release :
ISBN-10 : 9783540772095
ISBN-13 : 354077209X
Rating : 4/5 (95 Downloads)

Synopsis Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations by : Tarek Mathew

Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.

Domain Decomposition

Domain Decomposition
Author :
Publisher : Cambridge University Press
Total Pages : 244
Release :
ISBN-10 : 0521602866
ISBN-13 : 9780521602860
Rating : 4/5 (66 Downloads)

Synopsis Domain Decomposition by : Barry Smith

Presents an easy-to-read discussion of domain decomposition algorithms, their implementation and analysis. Ideal for graduate students about to embark on a career in computational science. It will also be a valuable resource for all those interested in parallel computing and numerical computational methods.

An Introduction to Domain Decomposition Methods

An Introduction to Domain Decomposition Methods
Author :
Publisher : SIAM
Total Pages : 242
Release :
ISBN-10 : 9781611974058
ISBN-13 : 1611974054
Rating : 4/5 (58 Downloads)

Synopsis An Introduction to Domain Decomposition Methods by : Victorita Dolean

The purpose of this book is to offer an overview of the most popular domain decomposition methods for partial differential equations (PDEs). These methods are widely used for numerical simulations in solid mechanics, electromagnetism, flow in porous media, etc., on parallel machines from tens to hundreds of thousands of cores. The appealing feature of domain decomposition methods is that, contrary to direct methods, they are naturally parallel. The authors focus on parallel linear solvers. The authors present all popular algorithms, both at the PDE level and at the discrete level in terms of matrices, along with systematic scripts for sequential implementation in a free open-source finite element package as well as some parallel scripts. Also included is a new coarse space construction (two-level method) that adapts to highly heterogeneous problems.?

Parallel Numerical Algorithms

Parallel Numerical Algorithms
Author :
Publisher : Springer Science & Business Media
Total Pages : 403
Release :
ISBN-10 : 9789401154123
ISBN-13 : 9401154120
Rating : 4/5 (23 Downloads)

Synopsis Parallel Numerical Algorithms by : David E. Keyes

In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.

Stability Estimates for Hybrid Coupled Domain Decomposition Methods

Stability Estimates for Hybrid Coupled Domain Decomposition Methods
Author :
Publisher : Springer Science & Business Media
Total Pages : 132
Release :
ISBN-10 : 3540002774
ISBN-13 : 9783540002772
Rating : 4/5 (74 Downloads)

Synopsis Stability Estimates for Hybrid Coupled Domain Decomposition Methods by : Olaf Steinbach

Domain decomposition methods are a well established tool for an efficient numerical solution of partial differential equations, in particular for the coupling of different model equations and of different discretization methods. Based on the approximate solution of local boundary value problems either by finite or boundary element methods, the global problem is reduced to an operator equation on the skeleton of the domain decomposition. Different variational formulations then lead to hybrid domain decomposition methods.

Domain Decomposition Methods in Optimal Control of Partial Differential Equations

Domain Decomposition Methods in Optimal Control of Partial Differential Equations
Author :
Publisher : Birkhäuser
Total Pages : 454
Release :
ISBN-10 : 9783034878852
ISBN-13 : 3034878850
Rating : 4/5 (52 Downloads)

Synopsis Domain Decomposition Methods in Optimal Control of Partial Differential Equations by : John E. Lagnese

While domain decomposition methods have a long history dating back well over one hundred years, it is only during the last decade that they have become a major tool in numerical analysis of partial differential equations. This monograph emphasizes domain decomposition methods in the context of so-called virtual optimal control problems and treats optimal control problems for partial differential equations and their decompositions using an all-at-once approach.

Numerical Analysis of Partial Differential Equations

Numerical Analysis of Partial Differential Equations
Author :
Publisher : John Wiley & Sons
Total Pages : 506
Release :
ISBN-10 : 9781118111116
ISBN-13 : 1118111117
Rating : 4/5 (16 Downloads)

Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui

A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.

Computational Partial Differential Equations

Computational Partial Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 704
Release :
ISBN-10 : 9783662011706
ISBN-13 : 3662011700
Rating : 4/5 (06 Downloads)

Synopsis Computational Partial Differential Equations by : Hans Petter Langtangen

Targeted at students and researchers in computational sciences who need to develop computer codes for solving PDEs, the exposition here is focused on numerics and software related to mathematical models in solid and fluid mechanics. The book teaches finite element methods, and basic finite difference methods from a computational point of view, with the main emphasis on developing flexible computer programs, using the numerical library Diffpack. Diffpack is explained in detail for problems including model equations in applied mathematics, heat transfer, elasticity, and viscous fluid flow. All the program examples, as well as Diffpack for use with this book, are available on the Internet. XXXXXXX NEUER TEXT This book is for researchers who need to develop computer code for solving PDEs. Numerical methods and the application of Diffpack are explained in detail. Diffpack is a modern C++ development environment that is widely used by industrial scientists and engineers working in areas such as oil exploration, groundwater modeling, and materials testing. All the program examples, as well as a test version of Diffpack, are available for free over the Internet.

Domain Decomposition Methods in Science and Engineering XVI

Domain Decomposition Methods in Science and Engineering XVI
Author :
Publisher : Springer Science & Business Media
Total Pages : 783
Release :
ISBN-10 : 9783540344681
ISBN-13 : 3540344683
Rating : 4/5 (81 Downloads)

Synopsis Domain Decomposition Methods in Science and Engineering XVI by : Olof B. Widlund

Domain decomposition is an active research area concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models of natural and engineered systems. The present volume sets forth new contributions in areas of numerical analysis, computer science, scientific and industrial applications, and software development.