Dna Replication In Plants

Dna Replication In Plants
Author :
Publisher : CRC Press
Total Pages : 477
Release :
ISBN-10 : 9781351088411
ISBN-13 : 1351088416
Rating : 4/5 (11 Downloads)

Synopsis Dna Replication In Plants by : John A. Bryant

This texts discusses DNA replication in plants including chapters on; functional chromosomal structure, the biochemistry of DNA replication, Control of DNA replication, Replication of plant organelle DNA, replication of DNA viruses in plants, and DNA damage, repair, and mutagenesis.

Genome Duplication

Genome Duplication
Author :
Publisher : Garland Science
Total Pages : 476
Release :
ISBN-10 : 9781136738234
ISBN-13 : 1136738231
Rating : 4/5 (34 Downloads)

Synopsis Genome Duplication by : Melvin DePamphilis

Genome Duplication provides a comprehensive and readable overview of the underlying principles that govern genome duplication in all forms of life, from the simplest cell to the most complex multicellular organism. Using examples from the three domains of life - bacteria, archaea, and eukarya - Genome Duplication shows how all living organisms store their genome as DNA and how they all use the same evolutionary-conserved mechanism to duplicate it: semi-conservative DNA replication by the replication fork. The text shows how the replication fork determines where organisms begin genome duplication, how they produce a complete copy of their genome each time a cell divides, and how they link genome duplication to cell division. Genome Duplication explains how mistakes in genome duplication are associated with genetic disorders and cancer, and how understanding genome duplication, its regulation, and how the mechanisms differ between different forms of life, is critical to the understanding and treatment of human disease.

DNA Replication and Human Disease

DNA Replication and Human Disease
Author :
Publisher : CSHL Press
Total Pages : 814
Release :
ISBN-10 : 9780879697662
ISBN-13 : 0879697660
Rating : 4/5 (62 Downloads)

Synopsis DNA Replication and Human Disease by : Melvin L. DePamphilis

At least 5 trillion cell divisions are required for a fertilized egg to develop into an adult human, resulting in the production of more than 20 trillion meters of DNA! And yet, with only two exceptions, the genome is replicated once and only once each time a cell divides. How is this feat accomplished? What happens when errors occur? This book addresses these questions by presenting a thorough analysis of the molecular events that govern DNA replication in eukaryotic cells. The association between genome replication and cell proliferation, disease pathogenesis, and the development of targeted therapeutics is also addressed. At least 160 proteins are involved in replicating the human genome, and at least 40 diseases are caused by aberrant DNA replication, 35 by mutations in genes required for DNA replication or repair, 7 by mutations generated during mitochondrial DNA replication, and more than 40 by DNA viruses. Consequently, a growing number of therapeutic drugs are targeted to DNA replication proteins. This authoritative volume provides a rich source of information for researchers, physicians, and teachers, and will stimulate thinking about the relevance of DNA replication to human disease.

DNA Replication in Plants

DNA Replication in Plants
Author :
Publisher : CRC Press
Total Pages : 199
Release :
ISBN-10 : 1315892413
ISBN-13 : 9781315892412
Rating : 4/5 (13 Downloads)

Synopsis DNA Replication in Plants by : John A. Bryant

This texts discusses DNA replication in plants including chapters on; functional chromosomal structure, the biochemistry of DNA replication, Control of DNA replication, Replication of plant organelle DNA, replication of DNA viruses in plants, and DNA damage, repair, and mutagenesis.

Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair and Replication in Plants

Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair and Replication in Plants
Author :
Publisher : Frontiers Media SA
Total Pages : 131
Release :
ISBN-10 : 9782889198207
ISBN-13 : 2889198200
Rating : 4/5 (07 Downloads)

Synopsis Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair and Replication in Plants by : Alma Balestrazzi

Environmental stresses and metabolic by-products can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. As a consequence, plant growth and productivity are irreversibly compromised. To overcome genotoxic injury, plants have evolved complex strategies relying on a highly efficient repair machinery that responds to sophisticated damage perception/signaling networks. The DNA damage signaling network contains several key components: DNA damage sensors, signal transducers, mediators, and effectors. Most of these components are common to other eukaryotes but some features are unique to the plant kingdom. ATM and ATR are well-conserved members of PIKK family, which amplify and transduce signals to downstream effectors. ATM primarily responds to DNA double strand breaks while ATR responds to various forms of DNA damage. The signals from the activated transducer kinases are transmitted to the downstream cell-cycle regulators, such as CHK1, CHK2, and p53 in many eukaryotes. However, plants have no homologue of CHK1, CHK2 nor p53. The finding of Arabidopsis transcription factor SOG1 that seems functionally but not structurally similar to p53 suggests that plants have developed unique cell cycle regulation mechanism. The double strand break repair, recombination repair, postreplication repair, and lesion bypass, have been investigated in several plants. The DNA double strand break, a most critical damage for organisms are repaired non-homologous end joining (NHEJ) or homologous recombination (HR) pathway. Damage on template DNA makes replication stall, which is processed by translesion synthesis (TLS) or error-free postreplication repair (PPR) pathway. Deletion of the error-prone TLS polymerase reduces mutation frequencies, suggesting PPR maintains the stalled replication fork when TLS is not available. Unveiling the regulation networks among these multiple pathways would be the next challenge to be completed. Some intriguing issues have been disclosed such as the cross-talk between DNA repair, senescence and pathogen response and the involvement of non-coding RNAs in global genome stability. Several studies have highlighted the essential contribution of chromatin remodeling in DNA repair DNA damage sensing, signaling and repair have been investigated in relation to environmental stresses, seed quality issues, mutation breeding in both model and crop plants and all these studies strengthen the idea that components of the plant response to genotoxic stress might represent tools to improve stress tolerance and field performance. This focus issue gives researchers the opportunity to gather and interact by providing Mini-Reviews, Commentaries, Opinions, Original Research and Method articles which describe the most recent advances and future perspectives in the field of DNA damage sensing, signaling and repair in plants. A comprehensive overview of the current progresses dealing with the genotoxic stress response in plants will be provided looking at cellular and molecular level with multidisciplinary approaches. This will hopefully bring together valuable information for both plant biotechnologists and breeders.

The Plant Cell Cycle

The Plant Cell Cycle
Author :
Publisher : Springer Science & Business Media
Total Pages : 240
Release :
ISBN-10 : 9789401009362
ISBN-13 : 9401009368
Rating : 4/5 (62 Downloads)

Synopsis The Plant Cell Cycle by : Dirk Inzé

In recent years, the study of the plant cell cycle has become of major interest, not only to scientists working on cell division sensu strictu , but also to scientists dealing with plant hormones, development and environmental effects on growth. The book The Plant Cell Cycle is a very timely contribution to this exploding field. Outstanding contributors reviewed, not only knowledge on the most important classes of cell cycle regulators, but also summarized the various processes in which cell cycle control plays a pivotal role. The central role of the cell cycle makes this book an absolute must for plant molecular biologists.

Concepts of Biology

Concepts of Biology
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 1739015509
ISBN-13 : 9781739015503
Rating : 4/5 (09 Downloads)

Synopsis Concepts of Biology by : Samantha Fowler

Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.

DNA Replication

DNA Replication
Author :
Publisher : Cold Spring Harbor Perspective
Total Pages : 0
Release :
ISBN-10 : 1936113481
ISBN-13 : 9781936113484
Rating : 4/5 (81 Downloads)

Synopsis DNA Replication by : Stephen D. Bell

"A subject collection from Cold Spring Harbor perspectives in biology."

The Circadian Clock

The Circadian Clock
Author :
Publisher : Springer Science & Business Media
Total Pages : 306
Release :
ISBN-10 : 9781441912626
ISBN-13 : 1441912622
Rating : 4/5 (26 Downloads)

Synopsis The Circadian Clock by : Urs Albrecht

With the invitation to edit this volume, I wanted to take the opportunity to assemble reviews on different aspects of circadian clocks and rhythms. Although most c- tributions in this volume focus on mammalian circadian clocks, the historical int- duction and comparative clocks section illustrate the importance of various other organisms in deciphering the mechanisms and principles of circadian biology. Circadian rhythms have been studied for centuries, but only recently, a mole- lar understanding of this process has emerged. This has taken research on circadian clocks from mystic phenomenology to a mechanistic level; chains of molecular events can describe phenomena with remarkable accuracy. Nevertheless, current models of the functioning of circadian clocks are still rudimentary. This is not due to the faultiness of discovered mechanisms, but due to the lack of undiscovered processes involved in contributing to circadian rhythmicity. We know for example, that the general circadian mechanism is not regulated equally in all tissues of m- mals. Hence, a lot still needs to be discovered to get a full understanding of cir- dian rhythms at the systems level. In this respect, technology has advanced at high speed in the last years and provided us with data illustrating the sheer complexity of regulation of physiological processes in organisms. To handle this information, computer aided integration of the results is of utmost importance in order to d- cover novel concepts that ultimately need to be tested experimentally.