Discovering Modern Set Theory. I: The Basics

Discovering Modern Set Theory. I: The Basics
Author :
Publisher : American Mathematical Soc.
Total Pages : 230
Release :
ISBN-10 : 9780821802663
ISBN-13 : 0821802666
Rating : 4/5 (63 Downloads)

Synopsis Discovering Modern Set Theory. I: The Basics by : Winfried Just

This book bridges the gap between the many elementary introductions to set theory that are available today and the more advanced, specialized monographs. The authors have taken great care to motivate concepts as they are introduced. The large number of exercises included make this book especially suitable for self-study. Students are guided towards their own discoveries in a lighthearted, yet rigorous manner.

Introduction to Modern Set Theory

Introduction to Modern Set Theory
Author :
Publisher : John Wiley & Sons
Total Pages : 188
Release :
ISBN-10 : 0471635197
ISBN-13 : 9780471635192
Rating : 4/5 (97 Downloads)

Synopsis Introduction to Modern Set Theory by : Judith Roitman

This is modern set theory from the ground up--from partial orderings and well-ordered sets to models, infinite cobinatorics and large cardinals. The approach is unique, providing rigorous treatment of basic set-theoretic methods, while integrating advanced material such as independence results, throughout. The presentation incorporates much interesting historical material and no background in mathematical logic is assumed. Treatment is self-contained, featuring theorem proofs supported by diagrams, examples and exercises. Includes applications of set theory to other branches of mathematics.

Set Theory

Set Theory
Author :
Publisher : Springer
Total Pages : 335
Release :
ISBN-10 : 9783319067254
ISBN-13 : 3319067257
Rating : 4/5 (54 Downloads)

Synopsis Set Theory by : Ralf Schindler

This textbook gives an introduction to axiomatic set theory and examines the prominent questions that are relevant in current research in a manner that is accessible to students. Its main theme is the interplay of large cardinals, inner models, forcing and descriptive set theory. The following topics are covered: • Forcing and constructability • The Solovay-Shelah Theorem i.e. the equiconsistency of ‘every set of reals is Lebesgue measurable’ with one inaccessible cardinal • Fine structure theory and a modern approach to sharps • Jensen’s Covering Lemma • The equivalence of analytic determinacy with sharps • The theory of extenders and iteration trees • A proof of projective determinacy from Woodin cardinals. Set Theory requires only a basic knowledge of mathematical logic and will be suitable for advanced students and researchers.

Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician

Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician
Author :
Publisher : American Mathematical Soc.
Total Pages : 240
Release :
ISBN-10 : 9780821805282
ISBN-13 : 0821805282
Rating : 4/5 (82 Downloads)

Synopsis Discovering Modern Set Theory. II: Set-Theoretic Tools for Every Mathematician by : Winfried Just

This is the second volume of a two-volume graduate text in set theory. The first volume covered the basics of modern set theory and was addressed primarily to beginning graduate students. The second volume is intended as a bridge between introductory set theory courses such as the first volume and advanced monographs that cover selected branches of set theory. The authors give short but rigorous introductions to set-theoretic concepts and techniques such as trees, partition calculus, cardinal invariants of the continuum, Martin's Axiom, closed unbounded and stationary sets, the Diamond Principle, and the use of elementary submodels. Great care is taken to motivate concepts and theorems presented.

Combinatorial Set Theory

Combinatorial Set Theory
Author :
Publisher : Springer
Total Pages : 586
Release :
ISBN-10 : 9783319602318
ISBN-13 : 3319602314
Rating : 4/5 (18 Downloads)

Synopsis Combinatorial Set Theory by : Lorenz J. Halbeisen

This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.

A Book of Set Theory

A Book of Set Theory
Author :
Publisher : Courier Corporation
Total Pages : 259
Release :
ISBN-10 : 9780486497082
ISBN-13 : 0486497089
Rating : 4/5 (82 Downloads)

Synopsis A Book of Set Theory by : Charles C Pinter

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--

Descriptive Set Theory

Descriptive Set Theory
Author :
Publisher : American Mathematical Society
Total Pages : 518
Release :
ISBN-10 : 9781470479879
ISBN-13 : 1470479877
Rating : 4/5 (79 Downloads)

Synopsis Descriptive Set Theory by : Yiannis N. Moschovakis

Descriptive Set Theory is the study of sets in separable, complete metric spaces that can be defined (or constructed), and so can be expected to have special properties not enjoyed by arbitrary pointsets. This subject was started by the French analysts at the turn of the 20th century, most prominently Lebesgue, and, initially, was concerned primarily with establishing regularity properties of Borel and Lebesgue measurable functions, and analytic, coanalytic, and projective sets. Its rapid development came to a halt in the late 1930s, primarily because it bumped against problems which were independent of classical axiomatic set theory. The field became very active again in the 1960s, with the introduction of strong set-theoretic hypotheses and methods from logic (especially recursion theory), which revolutionized it. This monograph develops Descriptive Set Theory systematically, from its classical roots to the modern ?effective? theory and the consequences of strong (especially determinacy) hypotheses. The book emphasizes the foundations of the subject, and it sets the stage for the dramatic results (established since the 1980s) relating large cardinals and determinacy or allowing applications of Descriptive Set Theory to classical mathematics. The book includes all the necessary background from (advanced) set theory, logic and recursion theory.

Introduction to Set Theory

Introduction to Set Theory
Author :
Publisher :
Total Pages : 272
Release :
ISBN-10 : UOM:39076000787080
ISBN-13 :
Rating : 4/5 (80 Downloads)

Synopsis Introduction to Set Theory by : Karel Hrbacek

Good Math

Good Math
Author :
Publisher : Pragmatic Bookshelf
Total Pages : 261
Release :
ISBN-10 : 9781680503609
ISBN-13 : 168050360X
Rating : 4/5 (09 Downloads)

Synopsis Good Math by : Mark C. Chu-Carroll

Mathematics is beautiful--and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you've ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of computer on your desk, this is the book for you. Why do Roman numerals persist? How do we know that some infinities are larger than others? And how can we know for certain a program will ever finish? In this fast-paced tour of modern and not-so-modern math, computer scientist Mark Chu-Carroll explores some of the greatest breakthroughs and disappointments of more than two thousand years of mathematical thought. There is joy and beauty in mathematics, and in more than two dozen essays drawn from his popular "Good Math" blog, you'll find concepts, proofs, and examples that are often surprising, counterintuitive, or just plain weird. Mark begins his journey with the basics of numbers, with an entertaining trip through the integers and the natural, rational, irrational, and transcendental numbers. The voyage continues with a look at some of the oddest numbers in mathematics, including zero, the golden ratio, imaginary numbers, Roman numerals, and Egyptian and continuing fractions. After a deep dive into modern logic, including an introduction to linear logic and the logic-savvy Prolog language, the trip concludes with a tour of modern set theory and the advances and paradoxes of modern mechanical computing. If your high school or college math courses left you grasping for the inner meaning behind the numbers, Mark's book will both entertain and enlighten you.