Direction Dependence In Statistical Modeling
Download Direction Dependence In Statistical Modeling full books in PDF, epub, and Kindle. Read online free Direction Dependence In Statistical Modeling ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Wolfgang Wiedermann |
Publisher |
: John Wiley & Sons |
Total Pages |
: 432 |
Release |
: 2020-11-24 |
ISBN-10 |
: 9781119523147 |
ISBN-13 |
: 1119523141 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Direction Dependence in Statistical Modeling by : Wolfgang Wiedermann
Covers the latest developments in direction dependence research Direction Dependence in Statistical Modeling: Methods of Analysis incorporates the latest research for the statistical analysis of hypotheses that are compatible with the causal direction of dependence of variable relations. Having particular application in the fields of neuroscience, clinical psychology, developmental psychology, educational psychology, and epidemiology, direction dependence methods have attracted growing attention due to their potential to help decide which of two competing statistical models is more likely to reflect the correct causal flow. The book covers several topics in-depth, including: A demonstration of the importance of methods for the analysis of direction dependence hypotheses A presentation of the development of methods for direction dependence analysis together with recent novel, unpublished software implementations A review of methods of direction dependence following the copula-based tradition of Sungur and Kim A presentation of extensions of direction dependence methods to the domain of categorical data An overview of algorithms for causal structure learning The book's fourteen chapters include a discussion of the use of custom dialogs and macros in SPSS to make direction dependence analysis accessible to empirical researchers.
Author |
: Wolfgang Wiedermann |
Publisher |
: John Wiley & Sons |
Total Pages |
: 432 |
Release |
: 2020-12-03 |
ISBN-10 |
: 9781119523079 |
ISBN-13 |
: 1119523079 |
Rating |
: 4/5 (79 Downloads) |
Synopsis Direction Dependence in Statistical Modeling by : Wolfgang Wiedermann
Covers the latest developments in direction dependence research Direction Dependence in Statistical Modeling: Methods of Analysis incorporates the latest research for the statistical analysis of hypotheses that are compatible with the causal direction of dependence of variable relations. Having particular application in the fields of neuroscience, clinical psychology, developmental psychology, educational psychology, and epidemiology, direction dependence methods have attracted growing attention due to their potential to help decide which of two competing statistical models is more likely to reflect the correct causal flow. The book covers several topics in-depth, including: A demonstration of the importance of methods for the analysis of direction dependence hypotheses A presentation of the development of methods for direction dependence analysis together with recent novel, unpublished software implementations A review of methods of direction dependence following the copula-based tradition of Sungur and Kim A presentation of extensions of direction dependence methods to the domain of categorical data An overview of algorithms for causal structure learning The book's fourteen chapters include a discussion of the use of custom dialogs and macros in SPSS to make direction dependence analysis accessible to empirical researchers.
Author |
: Mark Stemmler |
Publisher |
: Springer |
Total Pages |
: 385 |
Release |
: 2015-10-19 |
ISBN-10 |
: 9783319205854 |
ISBN-13 |
: 3319205854 |
Rating |
: 4/5 (54 Downloads) |
Synopsis Dependent Data in Social Sciences Research by : Mark Stemmler
This volume presents contributions on handling data in which the postulate of independence in the data matrix is violated. When this postulate is violated and when the methods assuming independence are still applied, the estimated parameters are likely to be biased, and statistical decisions are very likely to be incorrect. Problems associated with dependence in data have been known for a long time, and led to the development of tailored methods for the analysis of dependent data in various areas of statistical analysis. These methods include, for example, methods for the analysis of longitudinal data, corrections for dependency, and corrections for degrees of freedom. This volume contains the following five sections: growth curve modeling, directional dependence, dyadic data modeling, item response modeling (IRT), and other methods for the analysis of dependent data (e.g., approaches for modeling cross-section dependence, multidimensional scaling techniques, and mixed models). Researchers and graduate students in the social and behavioral sciences, education, econometrics, and medicine will find this up-to-date overview of modern statistical approaches for dealing with problems related to dependent data particularly useful.
Author |
: Pierre Duchesne |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 330 |
Release |
: 2005-12-05 |
ISBN-10 |
: 9780387245553 |
ISBN-13 |
: 0387245553 |
Rating |
: 4/5 (53 Downloads) |
Synopsis Statistical Modeling and Analysis for Complex Data Problems by : Pierre Duchesne
This book reviews some of today’s more complex problems, and reflects some of the important research directions in the field. Twenty-nine authors – largely from Montreal’s GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes – present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.
Author |
: Mark Stemmler |
Publisher |
: Springer Nature |
Total Pages |
: 785 |
Release |
: |
ISBN-10 |
: 9783031563188 |
ISBN-13 |
: 3031563182 |
Rating |
: 4/5 (88 Downloads) |
Synopsis Dependent Data in Social Sciences Research by : Mark Stemmler
Author |
: Michael H. Kutner |
Publisher |
: McGraw-Hill/Irwin |
Total Pages |
: 1396 |
Release |
: 2005 |
ISBN-10 |
: 0072386886 |
ISBN-13 |
: 9780072386882 |
Rating |
: 4/5 (86 Downloads) |
Synopsis Applied Linear Statistical Models by : Michael H. Kutner
Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.
Author |
: National Research Council |
Publisher |
: National Academies Press |
Total Pages |
: 383 |
Release |
: 2001-10-27 |
ISBN-10 |
: 9780309293228 |
ISBN-13 |
: 0309293227 |
Rating |
: 4/5 (28 Downloads) |
Synopsis Knowing What Students Know by : National Research Council
Education is a hot topic. From the stage of presidential debates to tonight's dinner table, it is an issue that most Americans are deeply concerned about. While there are many strategies for improving the educational process, we need a way to find out what works and what doesn't work as well. Educational assessment seeks to determine just how well students are learning and is an integral part of our quest for improved education. The nation is pinning greater expectations on educational assessment than ever before. We look to these assessment tools when documenting whether students and institutions are truly meeting education goals. But we must stop and ask a crucial question: What kind of assessment is most effective? At a time when traditional testing is subject to increasing criticism, research suggests that new, exciting approaches to assessment may be on the horizon. Advances in the sciences of how people learn and how to measure such learning offer the hope of developing new kinds of assessments-assessments that help students succeed in school by making as clear as possible the nature of their accomplishments and the progress of their learning. Knowing What Students Know essentially explains how expanding knowledge in the scientific fields of human learning and educational measurement can form the foundations of an improved approach to assessment. These advances suggest ways that the targets of assessment-what students know and how well they know it-as well as the methods used to make inferences about student learning can be made more valid and instructionally useful. Principles for designing and using these new kinds of assessments are presented, and examples are used to illustrate the principles. Implications for policy, practice, and research are also explored. With the promise of a productive research-based approach to assessment of student learning, Knowing What Students Know will be important to education administrators, assessment designers, teachers and teacher educators, and education advocates.
Author |
: Harry Joe |
Publisher |
: World Scientific |
Total Pages |
: 370 |
Release |
: 2011 |
ISBN-10 |
: 9789814299886 |
ISBN-13 |
: 981429988X |
Rating |
: 4/5 (86 Downloads) |
Synopsis Dependence Modeling by : Harry Joe
1. Introduction : Dependence modeling / D. Kurowicka -- 2. Multivariate copulae / M. Fischer -- 3. Vines arise / R.M. Cooke, H. Joe and K. Aas -- 4. Sampling count variables with specified Pearson correlation : A comparison between a naive and a C-vine sampling approach / V. Erhardt and C. Czado -- 5. Micro correlations and tail dependence / R.M. Cooke, C. Kousky and H. Joe -- 6. The Copula information criterion and Its implications for the maximum pseudo-likelihood estimator / S. Gronneberg -- 7. Dependence comparisons of vine copulae with four or more variables / H. Joe -- 8. Tail dependence in vine copulae / H. Joe -- 9. Counting vines / O. Morales-Napoles -- 10. Regular vines : Generation algorithm and number of equivalence classes / H. Joe, R.M. Cooke and D. Kurowicka -- 11. Optimal truncation of vines / D. Kurowicka -- 12. Bayesian inference for D-vines : Estimation and model selection / C. Czado and A. Min -- 13. Analysis of Australian electricity loads using joint Bayesian inference of D-vines with autoregressive margins / C. Czado, F. Gartner and A. Min -- 14. Non-parametric Bayesian belief nets versus vines / A. Hanea -- 15. Modeling dependence between financial returns using pair-copula constructions / K. Aas and D. Berg -- 16. Dynamic D-vine model / A. Heinen and A. Valdesogo -- 17. Summary and future directions / D. Kurowicka
Author |
: Stephen Boyd |
Publisher |
: Now Publishers Inc |
Total Pages |
: 138 |
Release |
: 2011 |
ISBN-10 |
: 9781601984609 |
ISBN-13 |
: 160198460X |
Rating |
: 4/5 (09 Downloads) |
Synopsis Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers by : Stephen Boyd
Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.
Author |
: Kenneth Train |
Publisher |
: Cambridge University Press |
Total Pages |
: 399 |
Release |
: 2009-07-06 |
ISBN-10 |
: 9780521766555 |
ISBN-13 |
: 0521766559 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Discrete Choice Methods with Simulation by : Kenneth Train
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.