Direct Copper Interconnection for Advanced Semiconductor Technology

Direct Copper Interconnection for Advanced Semiconductor Technology
Author :
Publisher : CRC Press
Total Pages : 549
Release :
ISBN-10 : 9781040028698
ISBN-13 : 1040028691
Rating : 4/5 (98 Downloads)

Synopsis Direct Copper Interconnection for Advanced Semiconductor Technology by : Dongkai Shangguan

In the “More than Moore” era, performance requirements for leading edge semiconductor devices are demanding extremely fine pitch interconnection in semiconductor packaging. Direct copper interconnection has emerged as the technology of choice in the semiconductor industry for fine pitch interconnection, with significant benefits for interconnect density and device performance. Low-temperature direct copper bonding, in particular, will become widely adopted for a broad range of highperformance semiconductor devices in the years to come. This book offers a comprehensive review and in-depth discussions of the key topics in this critical new technology. Chapter 1 reviews the evolution and the most recent advances in semiconductor packaging, leading to the requirement for extremely fine pitch interconnection, and Chapter 2 reviews different technologies for direct copper interconnection, with advantages and disadvantages for various applications. Chapter 3 offers an in-depth review of the hybrid bonding technology, outlining the critical processes and solutions. The area of materials for hybrid bonding is covered in Chapter 4, followed by several chapters that are focused on critical process steps and equipment for copper electrodeposition (Chapter 5), planarization (Chapter 6), wafer bonding (Chapter 7), and die bonding (Chapter 8). Aspects related to product applications are covered in Chapter 9 for design and Chapter 10 for thermal simulation. Finally, Chapter 11 covers reliability considerations and computer modeling for process and performance characterization, followed by the final chapter (Chapter 12) outlining the current and future applications of the hybrid bonding technology. Metrology and testing are also addressed throughout the chapters. Business, economic, and supply chain considerations are discussed as related to the product applications and manufacturing deployment of the technology, and the current status and future outlook as related to the various aspects of the ecosystem are outlined in the relevant chapters of the book. The book is aimed at academic and industry researchers as well as industry practitioners, and is intended to serve as a comprehensive source of the most up-to-date knowledge, and a review of the state-of-the art of the technology and applications, for direct copper interconnection and advanced semiconductor packaging in general.

Direct Copper Interconnection for Advanced Semiconductor Technology

Direct Copper Interconnection for Advanced Semiconductor Technology
Author :
Publisher : CRC Press
Total Pages : 0
Release :
ISBN-10 : 1032528230
ISBN-13 : 9781032528236
Rating : 4/5 (30 Downloads)

Synopsis Direct Copper Interconnection for Advanced Semiconductor Technology by : Dongkai Shangguan

In the "More than Moore" era, performance requirements for leading edge semiconductor devices are demanding extremely fine pitch interconnection in semiconductor packaging. Direct copper interconnection has emerged as the technology of choice in the semiconductor industry for fine pitch interconnection, with significant benefits for interconnect density and device performance. Low-temperature direct copper bonding, in particular, will become widely adopted for a broad range of highperformance semiconductor devices in the years to come. This book offers a comprehensive review and in-depth discussions of the key topics in this critical new technology. Chapter 1 reviews the evolution and the most recent advances in semiconductor packaging, leading to the requirement for extremely fine pitch interconnection, and Chapter 2 reviews different technologies for direct copper interconnection, with advantages and disadvantages for various applications. Chapter 3 offers an in-depth review of the hybrid bonding technology, outlining the critical processes and solutions. The area of materials for hybrid bonding is covered in Chapter 4, followed by several chapters that are focused on critical process steps and equipment for copper electrodeposition (Chapter 5), planarization (Chapter 6), wafer bonding (Chapter 7), and die bonding (Chapter 8). Aspects related to product applications are covered in Chapter 9 for design and Chapter 10 for thermal simulation. Finally, Chapter 11 covers reliability considerations and computer modeling for process and performance characterization, followed by the final chapter (Chapter 12) outlining the current and future applications of the hybrid bonding technology. Metrology and testing are also addressed throughout the chapters. Business, economic, and supply chain considerations are discussed as related to the product applications and manufacturing deployment of the technology, and the current status and future outlook as related to the various aspects of the ecosystem are outlined in the relevant chapters of the book. The book is aimed at academic and industry researchers as well as industry practitioners, and is intended to serve as a comprehensive source of the most up-to-date knowledge, and a review of the state-of-the art of the technology and applications, for direct copper interconnection and advanced semiconductor packaging in general.

Direct Copper Interconnection for Advanced Semiconductor Technology

Direct Copper Interconnection for Advanced Semiconductor Technology
Author :
Publisher : CRC Press
Total Pages : 463
Release :
ISBN-10 : 9781040028643
ISBN-13 : 1040028640
Rating : 4/5 (43 Downloads)

Synopsis Direct Copper Interconnection for Advanced Semiconductor Technology by : Dongkai Shangguan

In the “More than Moore” era, performance requirements for leading edge semiconductor devices are demanding extremely fine pitch interconnection in semiconductor packaging. Direct copper interconnection has emerged as the technology of choice in the semiconductor industry for fine pitch interconnection, with significant benefits for interconnect density and device performance. Low-temperature direct copper bonding, in particular, will become widely adopted for a broad range of highperformance semiconductor devices in the years to come. This book offers a comprehensive review and in-depth discussions of the key topics in this critical new technology. Chapter 1 reviews the evolution and the most recent advances in semiconductor packaging, leading to the requirement for extremely fine pitch interconnection, and Chapter 2 reviews different technologies for direct copper interconnection, with advantages and disadvantages for various applications. Chapter 3 offers an in-depth review of the hybrid bonding technology, outlining the critical processes and solutions. The area of materials for hybrid bonding is covered in Chapter 4, followed by several chapters that are focused on critical process steps and equipment for copper electrodeposition (Chapter 5), planarization (Chapter 6), wafer bonding (Chapter 7), and die bonding (Chapter 8). Aspects related to product applications are covered in Chapter 9 for design and Chapter 10 for thermal simulation. Finally, Chapter 11 covers reliability considerations and computer modeling for process and performance characterization, followed by the final chapter (Chapter 12) outlining the current and future applications of the hybrid bonding technology. Metrology and testing are also addressed throughout the chapters. Business, economic, and supply chain considerations are discussed as related to the product applications and manufacturing deployment of the technology, and the current status and future outlook as related to the various aspects of the ecosystem are outlined in the relevant chapters of the book. The book is aimed at academic and industry researchers as well as industry practitioners, and is intended to serve as a comprehensive source of the most up-to-date knowledge, and a review of the state-of-the art of the technology and applications, for direct copper interconnection and advanced semiconductor packaging in general.

Copper Interconnect Technology

Copper Interconnect Technology
Author :
Publisher : Springer Science & Business Media
Total Pages : 433
Release :
ISBN-10 : 9781441900760
ISBN-13 : 1441900764
Rating : 4/5 (60 Downloads)

Synopsis Copper Interconnect Technology by : Tapan Gupta

Since overall circuit performance has depended primarily on transistor properties, previous efforts to enhance circuit and system speed were focused on transistors as well. During the last decade, however, the parasitic resistance, capacitance, and inductance associated with interconnections began to influence circuit performance and will be the primary factors in the evolution of nanoscale ULSI technology. Because metallic conductivity and resistance to electromigration of bulk copper (Cu) are better than aluminum, use of copper and low-k materials is now prevalent in the international microelectronics industry. As the feature size of the Cu-lines forming interconnects is scaled, resistivity of the lines increases. At the same time electromigration and stress-induced voids due to increased current density become significant reliability issues. Although copper/low-k technology has become fairly mature, there is no single book available on the promise and challenges of these next-generation technologies. In this book, a leader in the field describes advanced laser systems with lower radiation wavelengths, photolithography materials, and mathematical modeling approaches to address the challenges of Cu-interconnect technology.

Copper Interconnect Technology

Copper Interconnect Technology
Author :
Publisher : SPIE Press
Total Pages : 138
Release :
ISBN-10 : 0819438979
ISBN-13 : 9780819438973
Rating : 4/5 (79 Downloads)

Synopsis Copper Interconnect Technology by : Christoph Steinbruchel

A textbook designed to accompany The Society of Photo-Optical Instrumentation Engineers' short course on improving interconnect performance for increased speed in overall circuit performance authored by Steinbrnchel (materials science and engineering, Renselaer Polytechnic Institute) and Chin (senio

Semiconductor Transport

Semiconductor Transport
Author :
Publisher : CRC Press
Total Pages : 379
Release :
ISBN-10 : 9781351973380
ISBN-13 : 135197338X
Rating : 4/5 (80 Downloads)

Synopsis Semiconductor Transport by : David Ferry

The information revolution would have been radically different, or impossible, without the use of the materials known generically as semiconductors. The properties of these materials, particularly the potential for doping with impurities to create transistors and diodes and controlling the local potential by gates, are essential for microelectronics. Semiconductor Transport is an introductory text on electron transport in semiconductor materials and is written for advanced undergraduates and graduate students. The book provides a thorough treatment of modern approaches to the transport properties of semiconductors and their calculation. It also introduces those aspects of solid state physics, which are vitally important for understanding transport in them.

Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits: Volume 514

Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits: Volume 514
Author :
Publisher :
Total Pages : 596
Release :
ISBN-10 : UOM:39015045684308
ISBN-13 :
Rating : 4/5 (08 Downloads)

Synopsis Advanced Interconnects and Contact Materials and Processes for Future Integrated Circuits: Volume 514 by : S. P. Murarka

Comprising the proceedings of an MRS symposium held in April of 1998, contributions in this volume are divided into ten sections: interconnection frontiers; aluminum interconnects; cobalt and other silicides; titanium silicide; MOSFET, source, drain, and interconnect engineering; copper interconnects and barriers; a poster session on advanced interconnects and contacts; contacts to compound semiconductor devices; novel interconnect materials and schemes; and diffusion barriers. Annotation copyrighted by Book News, Inc., Portland, OR

Failure Mechanisms in Semiconductor Devices

Failure Mechanisms in Semiconductor Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 368
Release :
ISBN-10 : UOM:39015040548888
ISBN-13 :
Rating : 4/5 (88 Downloads)

Synopsis Failure Mechanisms in Semiconductor Devices by : E. Ajith Amerasekera

Failure Mechanisms in Semiconductor Devices Second Edition E. Ajith Amerasekera Texas Instruments Inc., Dallas, USA Farid N. Najm University of Illinois at Urbana-Champaign, USA Since the successful first edition of Failure Mechanisms in Semiconductor Devices, semiconductor technology has become increasingly important. The high complexity of today's integrated circuits has engendered a demand for greater component reliability. Reflecting the need for guaranteed performance in consumer applications, this thoroughly updated edition includes more detailed material on reliability modelling and prediction. The book analyses the main failure mechanisms in terms of cause, effects and prevention and explains the mathematics behind reliability analysis. The authors detail methodologies for the identification of failures and describe the approaches for building reliability into semiconductor devices. Their thorough yet accessible text covers the physics of failure mechanisms from the semiconductor die itself to the packaging and interconnections. Incorporating recent advances, this comprehensive survey of semiconductor reliability will be an asset to both engineers and graduate students in the field.

ULSI Semiconductor Technology Atlas

ULSI Semiconductor Technology Atlas
Author :
Publisher : John Wiley & Sons
Total Pages : 688
Release :
ISBN-10 : 0471457728
ISBN-13 : 9780471457725
Rating : 4/5 (28 Downloads)

Synopsis ULSI Semiconductor Technology Atlas by : Chih-Hang Tung

More than 1,100 TEM images illustrate the science of ULSI The natural outgrowth of VLSI (Very Large Scale Integration), Ultra Large Scale Integration (ULSI) refers to semiconductor chips with more than 10 million devices per chip. Written by three renowned pioneers in their field, ULSI Semiconductor Technology Atlas uses examples and TEM (Transmission Electron Microscopy) micrographs to explain and illustrate ULSI process technologies and their associated problems. The first book available on the subject to be illustrated using TEM images, ULSI Semiconductor Technology Atlas is logically divided into four parts: * Part I includes basic introductions to the ULSI process, device construction analysis, and TEM sample preparation * Part II focuses on key ULSI modules--ion implantation and defects, dielectrics and isolation structures, silicides/salicides, and metallization * Part III examines integrated devices, including complete planar DRAM, stacked cell DRAM, and trench cell DRAM, as well as SRAM as examples for process integration and development * Part IV emphasizes special applications, including TEM in advanced failure analysis, TEM in advanced packaging development and UBM (Under Bump Metallization) studies, and high-resolution TEM in microelectronics This innovative guide also provides engineers and managers in the microelectronics industry, as well as graduate students, with: * More than 1,100 TEM images to illustrate the science of ULSI * A historical introduction to the technology as well as coverage of the evolution of basic ULSI process problems and issues * Discussion of TEM in other advanced microelectronics devices and materials, such as flash memories, SOI, SiGe devices, MEMS, and CD-ROMs

Advanced Materials for Thermal Management of Electronic Packaging

Advanced Materials for Thermal Management of Electronic Packaging
Author :
Publisher : Springer Science & Business Media
Total Pages : 633
Release :
ISBN-10 : 9781441977595
ISBN-13 : 1441977597
Rating : 4/5 (95 Downloads)

Synopsis Advanced Materials for Thermal Management of Electronic Packaging by : Xingcun Colin Tong

The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry’s ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.