Diffractive Optics and Nanophotonics

Diffractive Optics and Nanophotonics
Author :
Publisher : CRC Press
Total Pages : 718
Release :
ISBN-10 : 9781498754484
ISBN-13 : 1498754481
Rating : 4/5 (84 Downloads)

Synopsis Diffractive Optics and Nanophotonics by : V. A. Soifer

Diffractive Optics and Nanophotonics is devoted to achievements in diffractive optics, focusing on the creation of new nanophotonic components and devices, as well as instrumentation and available information technology. The author describes methods of calculation of diffractive optical elements to solve actual problems of nanophotonics. Coverage includes mathematical methods for calculation of diffraction gratings, calculation of modes of inhomogeneous waveguides, integral methods of calculation of electromagnetic field near the focus, and methods of calculation of diffractive optical elements generating vortex laser beams.

Diffractive Optics and Nanophotonics

Diffractive Optics and Nanophotonics
Author :
Publisher : Springer
Total Pages : 76
Release :
ISBN-10 : 9783319242538
ISBN-13 : 3319242539
Rating : 4/5 (38 Downloads)

Synopsis Diffractive Optics and Nanophotonics by : Igor Minin

In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible. With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Terahertz frequencies (terajets) using 3D dielectric particles of arbitrary size (cuboids) is considered. A scheme to create a 2D “teraknife” using dielectric rods is also discussed. In the final chapter the successful adaptation of free-space 3D binary phase-reversal conical FZPs for operation on surface plasmon-polariton (SPP) waves demonstrates that analogues of Fourier diffractive components can be developed for in-plane SPP 3D optics. Review ing theory, modelling and experiment, this book will be a valuable resource for students and researchers working on nanophotonics and sub-wavelength focusing and imaging.

Diffractive Nanophotonics

Diffractive Nanophotonics
Author :
Publisher : CRC Press
Total Pages : 697
Release :
ISBN-10 : 9781466590700
ISBN-13 : 146659070X
Rating : 4/5 (00 Downloads)

Synopsis Diffractive Nanophotonics by : Victor A Soifer

Diffractive Nanophotonics demonstrates the utility of the well-established methods of diffractive computer optics in solving nanophotonics tasks. It is concerned with peculiar properties of laser light diffraction by microoptics elements with nanoscale features and light confinement in subwavelength space regions. Written by recognized experts in t

Applied Digital Optics

Applied Digital Optics
Author :
Publisher : John Wiley & Sons
Total Pages : 638
Release :
ISBN-10 : 0470022647
ISBN-13 : 9780470022641
Rating : 4/5 (47 Downloads)

Synopsis Applied Digital Optics by : Bernard C. Kress

Miniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files. Gives product managers access to an exhaustive list of applications available in today’s market for integrating such digital optics, as well as where the next potential application of digital optics might be. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified. Explains the numerical implementation of optical design and modelling techniques. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.

Diffractive Optics

Diffractive Optics
Author :
Publisher : SPIE Press
Total Pages : 266
Release :
ISBN-10 : 0819451711
ISBN-13 : 9780819451712
Rating : 4/5 (11 Downloads)

Synopsis Diffractive Optics by : Donald C. O'Shea

This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.

Diffractive Optics and Nanophotonics

Diffractive Optics and Nanophotonics
Author :
Publisher : CRC Press
Total Pages : 605
Release :
ISBN-10 : 9781315351032
ISBN-13 : 131535103X
Rating : 4/5 (32 Downloads)

Synopsis Diffractive Optics and Nanophotonics by : V. A. Soifer

Diffractive Optics and Nanophotonics is devoted to achievements in diffractive optics, focusing on the creation of new nanophotonic components and devices, as well as instrumentation and available information technology. The author describes methods of calculation of diffractive optical elements to solve actual problems of nanophotonics. Coverage includes mathematical methods for calculation of diffraction gratings, calculation of modes of inhomogeneous waveguides, integral methods of calculation of electromagnetic field near the focus, and methods of calculation of diffractive optical elements generating vortex laser beams.

Design and Fabrication of Diffractive Optical Elements with MATLAB

Design and Fabrication of Diffractive Optical Elements with MATLAB
Author :
Publisher : SPIE-International Society for Optical Engineering
Total Pages : 276
Release :
ISBN-10 : 1510607056
ISBN-13 : 9781510607057
Rating : 4/5 (56 Downloads)

Synopsis Design and Fabrication of Diffractive Optical Elements with MATLAB by : Shanti Bhattacharya

"Given the many different applications and uses of diffractive optics, the importance of this field cannot be underestimated. This book supplements the available literature on diffractive optic elements (DOEs) by equipping readers with the skills to begin designing, simulating, and fabricating diffractive optics. The design of DOEs is presented with simple equations and step-by-step procedures for simulation--from the simplest 1D grating to the more complex multifunctional DOEs--and analyzing their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented. Basic error analysis and error-correction techniques for a few cases are also discussed. The contents of all the chapters are supported throughout by practical exercises and clearly commented MATLAB® codes (the codes are also on an accompanying CD), making this book useful even to a novice programmer"--

Handbook of Nano-Optics and Nanophotonics

Handbook of Nano-Optics and Nanophotonics
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 3642310656
ISBN-13 : 9783642310652
Rating : 4/5 (56 Downloads)

Synopsis Handbook of Nano-Optics and Nanophotonics by : Motoichi Ohtsu

In the 1990s, optical technology and photonics industry developed fast, but further progress became difficult due to a fundamental limit of light known as the diffraction limit. This limit could be overcome using the novel technology of nano-optics or nanophotonics in which the size of the electromagnetic field is decreased down to the nanoscale and is used as a carrier for signal transmission, processing, and fabrication. Such a decrease beyond the diffraction limit is possible by using optical near-fields. The true nature of nano-optics and nanophotonics involves not only their abilities to meet the above requirements but also their abilities to realize qualitative innovations in photonic devices, fabrication techniques, energy conversion and information processing systems. The objective of this work is to review the innovations of optical science and technology by nano-optics and nanophotonics. While in conventional optical science and technology, light and matter are discussed separately, in nano-optics and nanophotonics, light and matter have to be regarded as being coupled to each other, and the energy flow between nanoparticles is bidirectional. This means that nano-optics and nanophotonics have to be regarded as a technology fusing optical fields and matter. This unique work reviews and covers the most recent topics of nano-optics, applications to device operations, fabrication techniques, energy conversion, information processing, architectures and algorithms. Each chapter is written by the leading scientists in the relevant field. Thus, this work will provide high-quality scientific and technical information to scientists, engineers, and graduate students who are and will be engaged in R&D of nano-optics and nanophotonics. Especially, the topics to be covered by this work will be popularly used by the engineers in the rapidly growing market of the optical energy conversion.

Near-Field Nano-Optics

Near-Field Nano-Optics
Author :
Publisher : Springer Science & Business Media
Total Pages : 397
Release :
ISBN-10 : 9781461548355
ISBN-13 : 1461548357
Rating : 4/5 (55 Downloads)

Synopsis Near-Field Nano-Optics by : Motoichi Ohtsu

Conventional optical science and technology have been restricted by the diffraction limit from reducing the sizes of optical and photoruc devices to nanometric dimensions. Thus, the size of optical integrated circuits has been incompatible with that of their counterpart, integrated electronic circuits, which have much smaller dimensions. This book provides potential ideas and methods to overcome this difficulty. Near-field optics has developed very rapidly from around the middle 1980s after preliminary trials in the microwave frequency region, as proposed as early as 1928. At the early stages of this development, most technical efforts were devoted to realizing super-high-resolution optical microscopy beyond the diffraction limit. However, the possibility of exploiting the optical near-field, phenomenon of quasistatic electromagnetic interaction at subwavelength distances between nanometric particles has opened new ways to nanometric optical science and technology, and many applications to nanometric fabrication and manipulation have been proposed and implemented. Building on this historical background, this book describes recent progress in near-field optical science and technology, mainly using research of the author's groups. The title of this book, Near-Field Nano-Optics-From Basic Principles to Nano-Fabrication and Nano-Photonics, implies capabilities of the optical near field not only for imaging/microscopy, but also for fabrication/manipulation/proc essing on a nanometric scale.

Photonics Elements for Sensing and Optical Conversions

Photonics Elements for Sensing and Optical Conversions
Author :
Publisher : CRC Press
Total Pages : 382
Release :
ISBN-10 : 9781003812722
ISBN-13 : 1003812724
Rating : 4/5 (22 Downloads)

Synopsis Photonics Elements for Sensing and Optical Conversions by : Nikolay L. Kazanskiy

This book covers a number of a rapidly growing areas of knowledge that may be termed as diffractive nanophotonics. It also discusses in detail photonic components that may find uses in sensorics and optical transformations. Photonics Elements for Sensing and Optical Conversions, covers a number of rapidly growing areas of knowledge that may be termed as diffractive nanophotonics. The book examines the advances in computational electrodynamics and nanoelectronics that have made it possible to design and manufacture novel types of photonic components and devices boasting unique properties unattainable in the realm of classical optics. The authors discuss plasmonic sensors, and new types of wavefront sensors and nanolasers that are widely used in telecommunications, quantum informatics and optical transformations. The book also deals with the recent advances in the plasmonic sensors based on metal-insulator-metal waveguides for biochemical sensing applications. Additionally, nanolasers are examined in detail, with a focus on contemporary issues, the book also deals with the fundamentals and highly attractive applications of metamaterials and metasurfaces. The authors provide an insight into sensors based on Zernike optical decomposition using a multi-order diffractive optical element, and explore the performance advances that can be achieved with optical computing. The book is written for opticians, scientists and researchers who are interested in an interesting section of plasmonic sensors, new types of wavefront sensors and nanolasers, and optical transformations. The book will be bought by upper graduate and graduate level students looking to specialize in photonics and optics.