Differential Geometry For Physicists
Download Differential Geometry For Physicists full books in PDF, epub, and Kindle. Read online free Differential Geometry For Physicists ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Gabriel Lugo |
Publisher |
: |
Total Pages |
: 372 |
Release |
: 2021-10-15 |
ISBN-10 |
: 1469669250 |
ISBN-13 |
: 9781469669250 |
Rating |
: 4/5 (50 Downloads) |
Synopsis Differential Geometry in Physics by : Gabriel Lugo
Differential Geometry in Physics is a treatment of the mathematical foundations of the theory of general relativity and gauge theory of quantum fields. The material is intended to help bridge the gap that often exists between theoretical physics and applied mathematics. The approach is to carve an optimal path to learning this challenging field by appealing to the much more accessible theory of curves and surfaces. The transition from classical differential geometry as developed by Gauss, Riemann and other giants, to the modern approach, is facilitated by a very intuitive approach that sacrifices some mathematical rigor for the sake of understanding the physics. The book features numerous examples of beautiful curves and surfaces often reflected in nature, plus more advanced computations of trajectory of particles in black holes. Also embedded in the later chapters is a detailed description of the famous Dirac monopole and instantons. Features of this book: * Chapters 1-4 and chapter 5 comprise the content of a one-semester course taught by the author for many years. * The material in the other chapters has served as the foundation for many master's thesis at University of North Carolina Wilmington for students seeking doctoral degrees. * An open access ebook edition is available at Open UNC (https: //openunc.org) * The book contains over 80 illustrations, including a large array of surfaces related to the theory of soliton waves that does not commonly appear in standard mathematical texts on differential geometry.
Author |
: Bo-yu Hou |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 561 |
Release |
: 1997-10-31 |
ISBN-10 |
: 9789813105096 |
ISBN-13 |
: 9813105097 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Differential Geometry For Physicists by : Bo-yu Hou
This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.
Author |
: Chris J. Isham |
Publisher |
: Allied Publishers |
Total Pages |
: 308 |
Release |
: 2002 |
ISBN-10 |
: 8177643169 |
ISBN-13 |
: 9788177643169 |
Rating |
: 4/5 (69 Downloads) |
Synopsis Modern Differential Geometry for Physicists by : Chris J. Isham
Author |
: Charles Nash |
Publisher |
: Courier Corporation |
Total Pages |
: 302 |
Release |
: 2013-08-16 |
ISBN-10 |
: 9780486318363 |
ISBN-13 |
: 0486318362 |
Rating |
: 4/5 (63 Downloads) |
Synopsis Topology and Geometry for Physicists by : Charles Nash
Written by physicists for physics students, this text assumes no detailed background in topology or geometry. Topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory. 1983 edition.
Author |
: Marián Fecko |
Publisher |
: Cambridge University Press |
Total Pages |
: 11 |
Release |
: 2006-10-12 |
ISBN-10 |
: 9781139458030 |
ISBN-13 |
: 1139458035 |
Rating |
: 4/5 (30 Downloads) |
Synopsis Differential Geometry and Lie Groups for Physicists by : Marián Fecko
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.
Author |
: Theodore Frankel |
Publisher |
: Cambridge University Press |
Total Pages |
: 749 |
Release |
: 2011-11-03 |
ISBN-10 |
: 9781139505611 |
ISBN-13 |
: 1139505610 |
Rating |
: 4/5 (11 Downloads) |
Synopsis The Geometry of Physics by : Theodore Frankel
This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.
Author |
: Gerd Rudolph |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 766 |
Release |
: 2012-11-09 |
ISBN-10 |
: 9789400753457 |
ISBN-13 |
: 9400753454 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Differential Geometry and Mathematical Physics by : Gerd Rudolph
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.
Author |
: A Visconti |
Publisher |
: World Scientific Publishing Company |
Total Pages |
: 433 |
Release |
: 1992-10-09 |
ISBN-10 |
: 9789813103887 |
ISBN-13 |
: 9813103884 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Introductory Differential Geometry For Physicists by : A Visconti
This book develops the mathematics of differential geometry in a way more intelligible to physicists and other scientists interested in this field. This book is basically divided into 3 levels; level 0, the nearest to intuition and geometrical experience, is a short summary of the theory of curves and surfaces; level 1 repeats, comments and develops upon the traditional methods of tensor algebra analysis and level 2 is an introduction to the language of modern differential geometry. A final chapter (chapter IV) is devoted to fibre bundles and their applications to physics. Exercises are provided to amplify the text material.
Author |
: Yves Talpaert |
Publisher |
: CRC Press |
Total Pages |
: 480 |
Release |
: 2000-09-12 |
ISBN-10 |
: 0824703855 |
ISBN-13 |
: 9780824703851 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Differential Geometry with Applications to Mechanics and Physics by : Yves Talpaert
An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.
Author |
: Mikio Nakahara |
Publisher |
: Taylor & Francis |
Total Pages |
: 596 |
Release |
: 2018-10-03 |
ISBN-10 |
: 9781420056945 |
ISBN-13 |
: 1420056948 |
Rating |
: 4/5 (45 Downloads) |
Synopsis Geometry, Topology and Physics by : Mikio Nakahara
Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.