Non-Local Partial Differential Equations for Engineering and Biology

Non-Local Partial Differential Equations for Engineering and Biology
Author :
Publisher : Springer
Total Pages : 310
Release :
ISBN-10 : 9783319679440
ISBN-13 : 3319679449
Rating : 4/5 (40 Downloads)

Synopsis Non-Local Partial Differential Equations for Engineering and Biology by : Nikos I. Kavallaris

This book presents new developments in non-local mathematical modeling and mathematical analysis on the behavior of solutions with novel technical tools. Theoretical backgrounds in mechanics, thermo-dynamics, game theory, and theoretical biology are examined in details. It starts off with a review and summary of the basic ideas of mathematical modeling frequently used in the sciences and engineering. The authors then employ a number of models in bio-science and material science to demonstrate applications, and provide recent advanced studies, both on deterministic non-local partial differential equations and on some of their stochastic counterparts used in engineering. Mathematical models applied in engineering, chemistry, and biology are subject to conservation laws. For instance, decrease or increase in thermodynamic quantities and non-local partial differential equations, associated with the conserved physical quantities as parameters. These present novel mathematical objects are engaged with rich mathematical structures, in accordance with the interactions between species or individuals, self-organization, pattern formation, hysteresis. These models are based on various laws of physics, such as mechanics of continuum, electro-magnetic theory, and thermodynamics. This is why many areas of mathematics, calculus of variation, dynamical systems, integrable systems, blow-up analysis, and energy methods are indispensable in understanding and analyzing these phenomena. This book aims for researchers and upper grade students in mathematics, engineering, physics, economics, and biology.

Nonlinear Ordinary Differential Equations

Nonlinear Ordinary Differential Equations
Author :
Publisher : Routledge
Total Pages : 342
Release :
ISBN-10 : 9781351428088
ISBN-13 : 135142808X
Rating : 4/5 (88 Downloads)

Synopsis Nonlinear Ordinary Differential Equations by : R. Grimshaw

Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.

Differential Equations and Their Applications

Differential Equations and Their Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 733
Release :
ISBN-10 : 9781475749694
ISBN-13 : 1475749694
Rating : 4/5 (94 Downloads)

Synopsis Differential Equations and Their Applications by : M. Braun

For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.

Ordinary Differential Equations with Applications

Ordinary Differential Equations with Applications
Author :
Publisher : World Scientific
Total Pages : 258
Release :
ISBN-10 : 9789812563194
ISBN-13 : 9812563199
Rating : 4/5 (94 Downloads)

Synopsis Ordinary Differential Equations with Applications by : Sze-Bi Hsu

During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based around the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook or as a valuable resource for researchers.

Differential Equations and Dynamical Systems

Differential Equations and Dynamical Systems
Author :
Publisher : Springer Science & Business Media
Total Pages : 530
Release :
ISBN-10 : 9781468402490
ISBN-13 : 1468402498
Rating : 4/5 (90 Downloads)

Synopsis Differential Equations and Dynamical Systems by : Lawrence Perko

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.

Fuzzy Differential Equations and Applications for Engineers and Scientists

Fuzzy Differential Equations and Applications for Engineers and Scientists
Author :
Publisher : CRC Press
Total Pages : 138
Release :
ISBN-10 : 9781315355535
ISBN-13 : 1315355531
Rating : 4/5 (35 Downloads)

Synopsis Fuzzy Differential Equations and Applications for Engineers and Scientists by : S. Chakraverty

Differential equations play a vital role in the modeling of physical and engineering problems, such as those in solid and fluid mechanics, viscoelasticity, biology, physics, and many other areas. In general, the parameters, variables and initial conditions within a model are considered as being defined exactly. In reality there may be only vague, imprecise or incomplete information about the variables and parameters available. This can result from errors in measurement, observation, or experimental data; application of different operating conditions; or maintenance induced errors. To overcome uncertainties or lack of precision, one can use a fuzzy environment in parameters, variables and initial conditions in place of exact (fixed) ones, by turning general differential equations into Fuzzy Differential Equations ("FDEs"). In real applications it can be complicated to obtain exact solution of fuzzy differential equations due to complexities in fuzzy arithmetic, creating the need for use of reliable and efficient numerical techniques in the solution of fuzzy differential equations. These include fuzzy ordinary and partial, fuzzy linear and nonlinear, and fuzzy arbitrary order differential equations. This unique work?provides a new direction for the reader in the use of basic concepts of fuzzy differential equations, solutions and its applications. It can serve as an essential reference work for students, scholars, practitioners, researchers and academicians in engineering and science who need to model uncertain physical problems.

Differential Equations with Applications in Biology, Physics, and Engineering

Differential Equations with Applications in Biology, Physics, and Engineering
Author :
Publisher : Routledge
Total Pages : 353
Release :
ISBN-10 : 9781351455183
ISBN-13 : 1351455184
Rating : 4/5 (83 Downloads)

Synopsis Differential Equations with Applications in Biology, Physics, and Engineering by : Jerome A. Goldstein

Suitable as a textbook for a graduate seminar in mathematical modelling, and as a resource for scientists in a wide range of disciplines. Presents 22 lectures from an international conference in Leibnitz, Austria (no date mentioned), explaining recent developments and results in differential equatio

Modern Elementary Differential Equations

Modern Elementary Differential Equations
Author :
Publisher : Courier Corporation
Total Pages : 260
Release :
ISBN-10 : 0486686434
ISBN-13 : 9780486686431
Rating : 4/5 (34 Downloads)

Synopsis Modern Elementary Differential Equations by : Richard Bellman

Designed to introduce students to the theory and applications of differential equations and to help them formulate scientific problems in terms of such equations, this undergraduate-level text emphasizes applications to problems in biology, economics, engineering, and physics. This edition also includes material on discontinuous solutions, Riccati and Euler equations, and linear difference equations.

Biology in Time and Space

Biology in Time and Space
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1470464144
ISBN-13 : 9781470464141
Rating : 4/5 (44 Downloads)

Synopsis Biology in Time and Space by : James P. Keener

A Second Course in Elementary Differential Equations

A Second Course in Elementary Differential Equations
Author :
Publisher : Elsevier
Total Pages : 272
Release :
ISBN-10 : 9781483276601
ISBN-13 : 1483276600
Rating : 4/5 (01 Downloads)

Synopsis A Second Course in Elementary Differential Equations by : Paul Waltman

A Second Course in Elementary Differential Equations deals with norms, metric spaces, completeness, inner products, and an asymptotic behavior in a natural setting for solving problems in differential equations. The book reviews linear algebra, constant coefficient case, repeated eigenvalues, and the employment of the Putzer algorithm for nondiagonalizable coefficient matrix. The text describes, in geometrical and in an intuitive approach, Liapunov stability, qualitative behavior, the phase plane concepts, polar coordinate techniques, limit cycles, the Poincaré-Bendixson theorem. The book explores, in an analytical procedure, the existence and uniqueness theorems, metric spaces, operators, contraction mapping theorem, and initial value problems. The contraction mapping theorem concerns operators that map a given metric space into itself, in which, where an element of the metric space M, an operator merely associates with it a unique element of M. The text also tackles inner products, orthogonality, bifurcation, as well as linear boundary value problems, (particularly the Sturm-Liouville problem). The book is intended for mathematics or physics students engaged in ordinary differential equations, and for biologists, engineers, economists, or chemists who need to master the prerequisites for a graduate course in mathematics.