Differential Equations On Measures And Functional Spaces
Download Differential Equations On Measures And Functional Spaces full books in PDF, epub, and Kindle. Read online free Differential Equations On Measures And Functional Spaces ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Vassili Kolokoltsov |
Publisher |
: Springer |
Total Pages |
: 536 |
Release |
: 2019-06-20 |
ISBN-10 |
: 9783030033774 |
ISBN-13 |
: 3030033775 |
Rating |
: 4/5 (74 Downloads) |
Synopsis Differential Equations on Measures and Functional Spaces by : Vassili Kolokoltsov
This advanced book focuses on ordinary differential equations (ODEs) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It briefly discusses the fundamentals before moving on to the cutting edge research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality chosen is suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-action-law kinetics from chemistry. It also covers nonlinear evolutions arising in evolutionary biology and mean-field games, optimization theory, epidemics and system biology, in general models of interacting particles or agents describing splitting and merging, collisions and breakage, mutations and the preferential-attachment growth on networks. The book is intended mainly for upper undergraduate and graduate students, but is also of use to researchers in differential equations and their applications. It particularly highlights the interconnections between various topics revealing where and how a particular result is used in other chapters or may be used in other contexts, and also clarifies the links between the languages of pseudo-differential operators, generalized functions, operator theory, abstract linear spaces, fractional calculus and path integrals.
Author |
: Françoise Demengel |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 480 |
Release |
: 2012-01-24 |
ISBN-10 |
: 9781447128076 |
ISBN-13 |
: 1447128079 |
Rating |
: 4/5 (76 Downloads) |
Synopsis Functional Spaces for the Theory of Elliptic Partial Differential Equations by : Françoise Demengel
The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem. The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. There are complete and detailed proofs of almost all the results announced and, in some cases, more than one proof is provided in order to highlight different features of the result. Each chapter concludes with a range of exercises of varying levels of difficulty, with hints to solutions provided for many of them.
Author |
: Haim Brezis |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 600 |
Release |
: 2010-11-02 |
ISBN-10 |
: 9780387709147 |
ISBN-13 |
: 0387709142 |
Rating |
: 4/5 (47 Downloads) |
Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis
This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Author |
: Simo Särkkä |
Publisher |
: Cambridge University Press |
Total Pages |
: 327 |
Release |
: 2019-05-02 |
ISBN-10 |
: 9781316510087 |
ISBN-13 |
: 1316510085 |
Rating |
: 4/5 (87 Downloads) |
Synopsis Applied Stochastic Differential Equations by : Simo Särkkä
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Author |
: Kosaku Yosida |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 480 |
Release |
: 2013-04-17 |
ISBN-10 |
: 9783662117910 |
ISBN-13 |
: 3662117916 |
Rating |
: 4/5 (10 Downloads) |
Synopsis Functional Analysis by : Kosaku Yosida
Author |
: Luigi Ambrosio |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 333 |
Release |
: 2008-10-29 |
ISBN-10 |
: 9783764387228 |
ISBN-13 |
: 376438722X |
Rating |
: 4/5 (28 Downloads) |
Synopsis Gradient Flows by : Luigi Ambrosio
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Author |
: A. Uglanov |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 280 |
Release |
: 2013-06-29 |
ISBN-10 |
: 9789401596220 |
ISBN-13 |
: 9401596220 |
Rating |
: 4/5 (20 Downloads) |
Synopsis Integration on Infinite-Dimensional Surfaces and Its Applications by : A. Uglanov
It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.
Author |
: Vladimir Igorevich Bogachev |
Publisher |
: American Mathematical Soc. |
Total Pages |
: 506 |
Release |
: 2010-07-21 |
ISBN-10 |
: 9780821849934 |
ISBN-13 |
: 082184993X |
Rating |
: 4/5 (34 Downloads) |
Synopsis Differentiable Measures and the Malliavin Calculus by : Vladimir Igorevich Bogachev
This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.
Author |
: Nicolai Victorovich Norin |
Publisher |
: World Scientific |
Total Pages |
: 280 |
Release |
: 1996 |
ISBN-10 |
: 9810225687 |
ISBN-13 |
: 9789810225681 |
Rating |
: 4/5 (87 Downloads) |
Synopsis The Extended Stochastic Integral in Linear Spaces with Differentiable Measures and Related Topics by : Nicolai Victorovich Norin
This volume discusses the extended stochastic integral (ESI) (or Skorokhod-Hitsuda Integral) and its relation to the logarithmic derivative of differentiable measure along the vector or operator field. In addition, the theory of surface measures and the theory of heat potentials in infinite-dimensional spaces are discussed. These theories are closely related to ESI.It starts with an account of classic stochastic analysis in the Wiener spaces; and then discusses in detail the ESI for the Wiener measure including properties of this integral understood as a process. Moreover, the ESI with a nonrandom kernel is investigated.Some chapters are devoted to the definition and the investigation of properties of the ESI for Gaussian and differentiable measures.Surface measures in Banach spaces and heat potentials theory in Hilbert space are also discussed.
Author |
: Dachun Yang |
Publisher |
: Springer |
Total Pages |
: 665 |
Release |
: 2014-01-04 |
ISBN-10 |
: 9783319008257 |
ISBN-13 |
: 3319008250 |
Rating |
: 4/5 (57 Downloads) |
Synopsis The Hardy Space H1 with Non-doubling Measures and Their Applications by : Dachun Yang
The present book offers an essential but accessible introduction to the discoveries first made in the 1990s that the doubling condition is superfluous for most results for function spaces and the boundedness of operators. It shows the methods behind these discoveries, their consequences and some of their applications. It also provides detailed and comprehensive arguments, many typical and easy-to-follow examples, and interesting unsolved problems. The theory of the Hardy space is a fundamental tool for Fourier analysis, with applications for and connections to complex analysis, partial differential equations, functional analysis and geometrical analysis. It also extends to settings where the doubling condition of the underlying measures may fail.