Delay and Functional Differential Equations and Their Applications

Delay and Functional Differential Equations and Their Applications
Author :
Publisher : Elsevier
Total Pages : 414
Release :
ISBN-10 : 9781483272337
ISBN-13 : 1483272338
Rating : 4/5 (37 Downloads)

Synopsis Delay and Functional Differential Equations and Their Applications by : Klaus Schmitt

Delay and Functional Differential Equations and Their Applications provides information pertinent to the fundamental aspects of functional differential equations and its applications. This book covers a variety of topics, including qualitative and geometric theory, control theory, Volterra equations, numerical methods, the theory of epidemics, problems in physiology, and other areas of applications. Organized into two parts encompassing 25 chapters, this book begins with an overview of problems involving functional differential equations with terminal conditions in function spaces. This text then examines the numerical methods for functional differential equations. Other chapters consider the theory of radiative transfer, which give rise to several interesting functional partial differential equations. This book discusses as well the theory of embedding fields, which studies systems of nonlinear functional differential equations that can be derived from psychological postulates and interpreted as neural networks. The final chapter deals with the usefulness of the flip-flop circuit. This book is a valuable resource for mathematicians.

An Introduction to Delay Differential Equations with Applications to the Life Sciences

An Introduction to Delay Differential Equations with Applications to the Life Sciences
Author :
Publisher : Springer Science & Business Media
Total Pages : 178
Release :
ISBN-10 : 9781441976468
ISBN-13 : 1441976469
Rating : 4/5 (68 Downloads)

Synopsis An Introduction to Delay Differential Equations with Applications to the Life Sciences by : hal smith

This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.

Delay Differential Equations and Applications

Delay Differential Equations and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 612
Release :
ISBN-10 : 1402036469
ISBN-13 : 9781402036460
Rating : 4/5 (69 Downloads)

Synopsis Delay Differential Equations and Applications by : O. Arino

This book groups material that was used for the Marrakech 2002 School on Delay Di'erential Equations and Applications. The school was held from September 9-21 2002 at the Semlalia College of Sciences of the Cadi Ayyad University, Marrakech, Morocco. 47 participants and 15 instructors originating from 21 countries attended the school. Fin- cial limitations only allowed support for part of the people from Africa andAsiawhohadexpressedtheirinterestintheschoolandhadhopedto come. Theschoolwassupportedby'nancementsfromNATO-ASI(Nato advanced School), the International Centre of Pure and Applied Mat- matics (CIMPA, Nice, France) and Cadi Ayyad University. The activity of the school consisted in courses, plenary lectures (3) and communi- tions (9), from Monday through Friday, 8. 30 am to 6. 30 pm. Courses were divided into units of 45mn duration, taught by block of two units, with a short 5mn break between two units within a block, and a 25mn break between two blocks. The school was intended for mathematicians willing to acquire some familiarity with delay di'erential equations or enhance their knowledge on this subject. The aim was indeed to extend the basic set of knowledge, including ordinary di'erential equations and semilinearevolutionequations,suchasforexamplethedi'usion-reaction equations arising in morphogenesis or the Belouzov-Zhabotinsky ch- ical reaction, and the classic approach for the resolution of these eq- tions by perturbation, to equations having in addition terms involving past values of the solution.

Delay Differential Equations and Applications to Biology

Delay Differential Equations and Applications to Biology
Author :
Publisher : Springer Nature
Total Pages : 292
Release :
ISBN-10 : 9789811606267
ISBN-13 : 9811606269
Rating : 4/5 (67 Downloads)

Synopsis Delay Differential Equations and Applications to Biology by : Fathalla A. Rihan

This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.

Applied Theory of Functional Differential Equations

Applied Theory of Functional Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 246
Release :
ISBN-10 : 9789401580847
ISBN-13 : 9401580847
Rating : 4/5 (47 Downloads)

Synopsis Applied Theory of Functional Differential Equations by : V. Kolmanovskii

This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.

Applied Delay Differential Equations

Applied Delay Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 204
Release :
ISBN-10 : 9780387743721
ISBN-13 : 0387743723
Rating : 4/5 (21 Downloads)

Synopsis Applied Delay Differential Equations by : Thomas Erneux

Applied Delay Differential Equations is a friendly introduction to the fast-growing field of time-delay differential equations. Written to a multi-disciplinary audience, it sets each area of science in his historical context and then guides the reader towards questions of current interest.

Nonoscillation Theory of Functional Differential Equations with Applications

Nonoscillation Theory of Functional Differential Equations with Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 526
Release :
ISBN-10 : 9781461434559
ISBN-13 : 1461434556
Rating : 4/5 (59 Downloads)

Synopsis Nonoscillation Theory of Functional Differential Equations with Applications by : Ravi P. Agarwal

This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​

Functional Differential Equations

Functional Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 176
Release :
ISBN-10 : 9789401716307
ISBN-13 : 9401716307
Rating : 4/5 (07 Downloads)

Synopsis Functional Differential Equations by : A.V. Kim

Beginning with the works of N.N.Krasovskii [81, 82, 83], which clari fied the functional nature of systems with delays, the functional approach provides a foundation for a complete theory of differential equations with delays. Based on the functional approach, different aspects of time-delay system theory have been developed with almost the same completeness as the corresponding field of ODE (ordinary differential equations) the ory. The term functional differential equations (FDE) is used as a syn onym for systems with delays 1. The systematic presentation of these re sults and further references can be found in a number of excellent books [2, 15, 22, 32, 34, 38, 41, 45, 50, 52, 77, 78, 81, 93, 102, 128]. In this monograph we present basic facts of i-smooth calculus ~ a new differential calculus of nonlinear functionals, based on the notion of the invariant derivative, and some of its applications to the qualitative theory of functional differential equations. Utilization of the new calculus is the main distinction of this book from other books devoted to FDE theory. Two other distinguishing features of the volume are the following: - the central concept that we use is the separation of finite dimensional and infinite dimensional components in the structures of FDE and functionals; - we use the conditional representation of functional differential equa tions, which is convenient for application of methods and constructions of i~smooth calculus to FDE theory.

Theory and Applications of Partial Functional Differential Equations

Theory and Applications of Partial Functional Differential Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 441
Release :
ISBN-10 : 9781461240501
ISBN-13 : 1461240506
Rating : 4/5 (01 Downloads)

Synopsis Theory and Applications of Partial Functional Differential Equations by : Jianhong Wu

Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.

Oscillation Theory for Neutral Differential Equations with Delay

Oscillation Theory for Neutral Differential Equations with Delay
Author :
Publisher : CRC Press
Total Pages : 296
Release :
ISBN-10 : 0750301422
ISBN-13 : 9780750301428
Rating : 4/5 (22 Downloads)

Synopsis Oscillation Theory for Neutral Differential Equations with Delay by : D.D Bainov

With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.