Deformation Theory and Quantum Groups with Applications to Mathematical Physics

Deformation Theory and Quantum Groups with Applications to Mathematical Physics
Author :
Publisher : American Mathematical Soc.
Total Pages : 388
Release :
ISBN-10 : 9780821851418
ISBN-13 : 0821851411
Rating : 4/5 (18 Downloads)

Synopsis Deformation Theory and Quantum Groups with Applications to Mathematical Physics by : Murray Gerstenhaber

Quantum groups are not groups at all, but special kinds of Hopf algebras of which the most important are closely related to Lie groups and play a central role in the statistical and wave mechanics of Baxter and Yang. Those occurring physically can be studied as essentially algebraic and closely related to the deformation theory of algebras (commutative, Lie, Hopf, and so on). One of the oldest forms of algebraic quantization amounts to the study of deformations of a commutative algebra A (of classical observables) to a noncommutative algebra A*h (of operators) with the infinitesimal deformation given by a Poisson bracket on the original algebra A. This volume grew out of an AMS--IMS--SIAM Joint Summer Research Conference, held in June 1990 at the University of Massachusetts at Amherst. The conference brought together leading researchers in the several areas mentioned and in areas such as ``q special functions'', which have their origins in the last century but whose relevance to modern physics has only recently been understood. Among the advances taking place during the conference was Majid's reconstruction theorem for Drinfel$'$d's quasi-Hopf algebras. Readers will appreciate this snapshot of some of the latest developments in the mathematics of quantum groups and deformation theory.

Foundations of Quantum Group Theory

Foundations of Quantum Group Theory
Author :
Publisher : Cambridge University Press
Total Pages : 668
Release :
ISBN-10 : 0521648688
ISBN-13 : 9780521648684
Rating : 4/5 (88 Downloads)

Synopsis Foundations of Quantum Group Theory by : Shahn Majid

A graduate level text which systematically lays out the foundations of Quantum Groups.

Factorizable Sheaves and Quantum Groups

Factorizable Sheaves and Quantum Groups
Author :
Publisher : Springer
Total Pages : 300
Release :
ISBN-10 : 9783540692317
ISBN-13 : 3540692312
Rating : 4/5 (17 Downloads)

Synopsis Factorizable Sheaves and Quantum Groups by : Roman Bezrukavnikov

The book is devoted to the geometrical construction of the representations of Lusztig's small quantum groups at roots of unity. These representations are realized as some spaces of vanishing cycles of perverse sheaves over configuration spaces. As an application, the bundles of conformal blocks over the moduli spaces of curves are studied. The book is intended for specialists in group representations and algebraic geometry.

Quantum Groups

Quantum Groups
Author :
Publisher : Springer Science & Business Media
Total Pages : 540
Release :
ISBN-10 : 9781461207832
ISBN-13 : 1461207835
Rating : 4/5 (32 Downloads)

Synopsis Quantum Groups by : Christian Kassel

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

Physics for Mathematicians

Physics for Mathematicians
Author :
Publisher :
Total Pages : 733
Release :
ISBN-10 : 0914098322
ISBN-13 : 9780914098324
Rating : 4/5 (22 Downloads)

Synopsis Physics for Mathematicians by : Michael Spivak

Higher Structures in Geometry and Physics

Higher Structures in Geometry and Physics
Author :
Publisher : Springer Science & Business Media
Total Pages : 371
Release :
ISBN-10 : 9780817647353
ISBN-13 : 081764735X
Rating : 4/5 (53 Downloads)

Synopsis Higher Structures in Geometry and Physics by : Alberto S. Cattaneo

This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.

Diagrammatic Morphisms and Applications

Diagrammatic Morphisms and Applications
Author :
Publisher : American Mathematical Soc.
Total Pages : 232
Release :
ISBN-10 : 9780821827949
ISBN-13 : 0821827944
Rating : 4/5 (49 Downloads)

Synopsis Diagrammatic Morphisms and Applications by : David E. Radford

The technique of diagrammatic morphisms is an important ingredient in comprehending and visualizing certain types of categories with structure. It was widely used in this capacity in many areas of algebra, low-dimensional topology and physics. It was also applied to problems in classical and quantum information processing and logic. This volume contains articles based on talks at the Special Session, ``Diagrammatic Morphisms in Algebra, Category Theory, and Topology'', at the AMS Sectional Meeting in San Francisco. The articles describe recent achievements in several aspects of diagrammatic morphisms and their applications. Some of them contain detailed expositions on various diagrammatic techniques. The introductory article by D. Yetter is a thorough account of the subject in a historical perspective.

Quantum Group Symmetry And Q-tensor Algebras

Quantum Group Symmetry And Q-tensor Algebras
Author :
Publisher : World Scientific
Total Pages : 305
Release :
ISBN-10 : 9789814500135
ISBN-13 : 9814500135
Rating : 4/5 (35 Downloads)

Synopsis Quantum Group Symmetry And Q-tensor Algebras by : Lawrence C Biedenharn

Quantum groups are a generalization of the classical Lie groups and Lie algebras and provide a natural extension of the concept of symmetry fundamental to physics. This monograph is a survey of the major developments in quantum groups, using an original approach based on the fundamental concept of a tensor operator. Using this concept, properties of both the algebra and co-algebra are developed from a single uniform point of view, which is especially helpful for understanding the noncommuting co-ordinates of the quantum plane, which we interpret as elementary tensor operators. Representations of the q-deformed angular momentum group are discussed, including the case where q is a root of unity, and general results are obtained for all unitary quantum groups using the method of algebraic induction. Tensor operators are defined and discussed with examples, and a systematic treatment of the important (3j) series of operators is developed in detail. This book is a good reference for graduate students in physics and mathematics.

New Directions in Hopf Algebras

New Directions in Hopf Algebras
Author :
Publisher : Cambridge University Press
Total Pages : 502
Release :
ISBN-10 : 0521815126
ISBN-13 : 9780521815123
Rating : 4/5 (26 Downloads)

Synopsis New Directions in Hopf Algebras by : Susan Montgomery

Hopf algebras have important connections to quantum theory, Lie algebras, knot and braid theory, operator algebras and other areas of physics and mathematics. They have been intensely studied in the past; in particular, the solution of a number of conjectures of Kaplansky from the 1970s has led to progress on the classification of semisimple Hopf algebras and on the structure of pointed Hopf algebras. Among the topics covered are results toward the classification of finite-dimensional Hopf algebras (semisimple and non-semisimple), as well as what is known about the extension theory of Hopf algebras. Some papers consider Hopf versions of classical topics, such as the Brauer group, while others are closer to work in quantum groups. The book also explores the connections and applications of Hopf algebras to other fields.

Functorial Knot Theory: Categories Of Tangles, Coherence, Categorical Deformations And Topological Invariants

Functorial Knot Theory: Categories Of Tangles, Coherence, Categorical Deformations And Topological Invariants
Author :
Publisher : World Scientific
Total Pages : 238
Release :
ISBN-10 : 9789814492249
ISBN-13 : 9814492248
Rating : 4/5 (49 Downloads)

Synopsis Functorial Knot Theory: Categories Of Tangles, Coherence, Categorical Deformations And Topological Invariants by : David N Yetter

Almost since the advent of skein-theoretic invariants of knots and links (the Jones, HOMFLY, and Kauffman polynomials), the important role of categories of tangles in the connection between low-dimensional topology and quantum-group theory has been recognized. The rich categorical structures naturally arising from the considerations of cobordisms have suggested functorial views of topological field theory.This book begins with a detailed exposition of the key ideas in the discovery of monoidal categories of tangles as central objects of study in low-dimensional topology. The focus then turns to the deformation theory of monoidal categories and the related deformation theory of monoidal functors, which is a proper generalization of Gerstenhaber's deformation theory of associative algebras. These serve as the building blocks for a deformation theory of braided monoidal categories which gives rise to sequences of Vassiliev invariants of framed links, and clarify their interrelations.