Deep Learning For The Earth Sciences
Download Deep Learning For The Earth Sciences full books in PDF, epub, and Kindle. Read online free Deep Learning For The Earth Sciences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Gustau Camps-Valls |
Publisher |
: John Wiley & Sons |
Total Pages |
: 436 |
Release |
: 2021-08-18 |
ISBN-10 |
: 9781119646167 |
ISBN-13 |
: 1119646162 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Deep Learning for the Earth Sciences by : Gustau Camps-Valls
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Author |
: Gustau Camps-Valls |
Publisher |
: John Wiley & Sons |
Total Pages |
: 436 |
Release |
: 2021-08-16 |
ISBN-10 |
: 9781119646143 |
ISBN-13 |
: 1119646146 |
Rating |
: 4/5 (43 Downloads) |
Synopsis Deep Learning for the Earth Sciences by : Gustau Camps-Valls
DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.
Author |
: Ashok N. Srivastava |
Publisher |
: CRC Press |
Total Pages |
: 314 |
Release |
: 2017-08-01 |
ISBN-10 |
: 9781315354460 |
ISBN-13 |
: 1315354462 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Large-Scale Machine Learning in the Earth Sciences by : Ashok N. Srivastava
From the Foreword: "While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences." --Vipin Kumar, University of Minnesota Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science. Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored. The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth. The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.
Author |
: William W. Hsieh |
Publisher |
: Cambridge University Press |
Total Pages |
: 364 |
Release |
: 2009-07-30 |
ISBN-10 |
: 9780521791922 |
ISBN-13 |
: 0521791928 |
Rating |
: 4/5 (22 Downloads) |
Synopsis Machine Learning Methods in the Environmental Sciences by : William W. Hsieh
A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Author |
: Maurizio Petrelli |
Publisher |
: Springer Nature |
Total Pages |
: 229 |
Release |
: 2021-09-16 |
ISBN-10 |
: 9783030780555 |
ISBN-13 |
: 3030780554 |
Rating |
: 4/5 (55 Downloads) |
Synopsis Introduction to Python in Earth Science Data Analysis by : Maurizio Petrelli
This textbook introduces the use of Python programming for exploring and modelling data in the field of Earth Sciences. It drives the reader from his very first steps with Python, like setting up the environment and starting writing the first lines of codes, to proficient use in visualizing, analyzing, and modelling data in the field of Earth Science. Each chapter contains explicative examples of code, and each script is commented in detail. The book is minded for very beginners in Python programming, and it can be used in teaching courses at master or PhD levels. Also, Early careers and experienced researchers who would like to start learning Python programming for the solution of geological problems will benefit the reading of the book.
Author |
: |
Publisher |
: Academic Press |
Total Pages |
: 318 |
Release |
: 2020-09-22 |
ISBN-10 |
: 9780128216842 |
ISBN-13 |
: 0128216840 |
Rating |
: 4/5 (42 Downloads) |
Synopsis Machine Learning and Artificial Intelligence in Geosciences by :
Advances in Geophysics, Volume 61 - Machine Learning and Artificial Intelligence in Geosciences, the latest release in this highly-respected publication in the field of geophysics, contains new chapters on a variety of topics, including a historical review on the development of machine learning, machine learning to investigate fault rupture on various scales, a review on machine learning techniques to describe fractured media, signal augmentation to improve the generalization of deep neural networks, deep generator priors for Bayesian seismic inversion, as well as a review on homogenization for seismology, and more. - Provides high-level reviews of the latest innovations in geophysics - Written by recognized experts in the field - Presents an essential publication for researchers in all fields of geophysics
Author |
: Joern Helbert |
Publisher |
: Elsevier |
Total Pages |
: 234 |
Release |
: 2022-03-22 |
ISBN-10 |
: 9780128187227 |
ISBN-13 |
: 0128187220 |
Rating |
: 4/5 (27 Downloads) |
Synopsis Machine Learning for Planetary Science by : Joern Helbert
Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation. - Includes links to a code repository for sharing codes and examples, some of which include executable Jupyter notebook files that can serve as tutorials - Presents methods applicable to everyday problems faced by planetary scientists and sufficient for analyzing large datasets - Serves as a guide for selecting the right method and tools for applying machine learning to particular analysis problems - Utilizes case studies to illustrate how machine learning methods can be employed in practice
Author |
: Rémi Cresson |
Publisher |
: CRC Press |
Total Pages |
: 158 |
Release |
: 2020-07-15 |
ISBN-10 |
: 9781000093612 |
ISBN-13 |
: 1000093611 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Deep Learning for Remote Sensing Images with Open Source Software by : Rémi Cresson
In today’s world, deep learning source codes and a plethora of open access geospatial images are readily available and easily accessible. However, most people are missing the educational tools to make use of this resource. Deep Learning for Remote Sensing Images with Open Source Software is the first practical book to introduce deep learning techniques using free open source tools for processing real world remote sensing images. The approaches detailed in this book are generic and can be adapted to suit many different applications for remote sensing image processing, including landcover mapping, forestry, urban studies, disaster mapping, image restoration, etc. Written with practitioners and students in mind, this book helps link together the theory and practical use of existing tools and data to apply deep learning techniques on remote sensing images and data. Specific Features of this Book: The first book that explains how to apply deep learning techniques to public, free available data (Spot-7 and Sentinel-2 images, OpenStreetMap vector data), using open source software (QGIS, Orfeo ToolBox, TensorFlow) Presents approaches suited for real world images and data targeting large scale processing and GIS applications Introduces state of the art deep learning architecture families that can be applied to remote sensing world, mainly for landcover mapping, but also for generic approaches (e.g. image restoration) Suited for deep learning beginners and readers with some GIS knowledge. No coding knowledge is required to learn practical skills. Includes deep learning techniques through many step by step remote sensing data processing exercises.
Author |
: Hamid Reza Pourghasemi |
Publisher |
: Elsevier |
Total Pages |
: 702 |
Release |
: 2021-09-22 |
ISBN-10 |
: 9780323898614 |
ISBN-13 |
: 0323898610 |
Rating |
: 4/5 (14 Downloads) |
Synopsis Computers in Earth and Environmental Sciences by : Hamid Reza Pourghasemi
Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management addresses the need for a comprehensive book that focuses on multi-hazard assessments, natural and manmade hazards, and risk management using new methods and technologies that employ GIS, artificial intelligence, spatial modeling, machine learning tools and meta-heuristic techniques. The book is clearly organized into four parts that cover natural hazards, environmental hazards, advanced tools and technologies in risk management, and future challenges in computer applications to hazards and risk management. Researchers and professionals in Earth and Environmental Science who require the latest technologies and advances in hazards, remote sensing, geosciences, spatial modeling and machine learning will find this book to be an invaluable source of information on the latest tools and technologies available. Covers advanced tools and technologies in risk management of hazards in both the Earth and Environmental Sciences Details the benefits and applications of various technologies to assist researchers in choosing the most appropriate techniques for purpose Expansively covers specific future challenges in the use of computers in Earth and Environmental Science Includes case studies that detail the applications of the discussed technologies down to individual hazards
Author |
: Yakoub Bazi |
Publisher |
: MDPI |
Total Pages |
: 438 |
Release |
: 2021-06-15 |
ISBN-10 |
: 9783036509860 |
ISBN-13 |
: 3036509860 |
Rating |
: 4/5 (60 Downloads) |
Synopsis Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images by : Yakoub Bazi
The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.