Data Quality Assessment

Data Quality Assessment
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 0977140024
ISBN-13 : 9780977140022
Rating : 4/5 (24 Downloads)

Synopsis Data Quality Assessment by : Arkady Maydanchik

Imagine a group of prehistoric hunters armed with stone-tipped spears. Their primitive weapons made hunting large animals, such as mammoths, dangerous work. Over time, however, a new breed of hunters developed. They would stretch the skin of a previously killed mammoth on the wall and throw their spears, while observing which spear, thrown from which angle and distance, penetrated the skin the best. The data gathered helped them make better spears and develop better hunting strategies. Quality data is the key to any advancement, whether it is from the Stone Age to the Bronze Age. Or from the Information Age to whatever Age comes next. The success of corporations and government institutions largely depends on the efficiency with which they can collect, organise, and utilise data about products, customers, competitors, and employees. Fortunately, improving your data quality does not have to be such a mammoth task. This book is a must read for anyone who needs to understand, correct, or prevent data quality issues in their organisation. Skipping theory and focusing purely on what is practical and what works, this text contains a proven approach to identifying, warehousing, and analysing data errors. Master techniques in data profiling and gathering metadata, designing data quality rules, organising rule and error catalogues, and constructing the dimensional data quality scorecard. David Wells, Director of Education of the Data Warehousing Institute, says "This is one of those books that marks a milestone in the evolution of a discipline. Arkady's insights and techniques fuel the transition of data quality management from art to science -- from crafting to engineering. From deep experience, with thoughtful structure, and with engaging style Arkady brings the discipline of data quality to practitioners."

Measuring Data Quality for Ongoing Improvement

Measuring Data Quality for Ongoing Improvement
Author :
Publisher : Newnes
Total Pages : 404
Release :
ISBN-10 : 9780123977540
ISBN-13 : 0123977541
Rating : 4/5 (40 Downloads)

Synopsis Measuring Data Quality for Ongoing Improvement by : Laura Sebastian-Coleman

The Data Quality Assessment Framework shows you how to measure and monitor data quality, ensuring quality over time. You'll start with general concepts of measurement and work your way through a detailed framework of more than three dozen measurement types related to five objective dimensions of quality: completeness, timeliness, consistency, validity, and integrity. Ongoing measurement, rather than one time activities will help your organization reach a new level of data quality. This plain-language approach to measuring data can be understood by both business and IT and provides practical guidance on how to apply the DQAF within any organization enabling you to prioritize measurements and effectively report on results. Strategies for using data measurement to govern and improve the quality of data and guidelines for applying the framework within a data asset are included. You'll come away able to prioritize which measurement types to implement, knowing where to place them in a data flow and how frequently to measure. Common conceptual models for defining and storing of data quality results for purposes of trend analysis are also included as well as generic business requirements for ongoing measuring and monitoring including calculations and comparisons that make the measurements meaningful and help understand trends and detect anomalies. - Demonstrates how to leverage a technology independent data quality measurement framework for your specific business priorities and data quality challenges - Enables discussions between business and IT with a non-technical vocabulary for data quality measurement - Describes how to measure data quality on an ongoing basis with generic measurement types that can be applied to any situation

The Practitioner's Guide to Data Quality Improvement

The Practitioner's Guide to Data Quality Improvement
Author :
Publisher : Elsevier
Total Pages : 423
Release :
ISBN-10 : 9780080920344
ISBN-13 : 0080920349
Rating : 4/5 (44 Downloads)

Synopsis The Practitioner's Guide to Data Quality Improvement by : David Loshin

The Practitioner's Guide to Data Quality Improvement offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. It shares the fundamentals for understanding the impacts of poor data quality, and guides practitioners and managers alike in socializing, gaining sponsorship for, planning, and establishing a data quality program. It demonstrates how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. It includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning. This book is recommended for data management practitioners, including database analysts, information analysts, data administrators, data architects, enterprise architects, data warehouse engineers, and systems analysts, and their managers. - Offers a comprehensive look at data quality for business and IT, encompassing people, process, and technology. - Shows how to institute and run a data quality program, from first thoughts and justifications to maintenance and ongoing metrics. - Includes an in-depth look at the use of data quality tools, including business case templates, and tools for analysis, reporting, and strategic planning.

Data Quality

Data Quality
Author :
Publisher : Elsevier
Total Pages : 313
Release :
ISBN-10 : 9780080503691
ISBN-13 : 0080503691
Rating : 4/5 (91 Downloads)

Synopsis Data Quality by : Jack E. Olson

Data Quality: The Accuracy Dimension is about assessing the quality of corporate data and improving its accuracy using the data profiling method. Corporate data is increasingly important as companies continue to find new ways to use it. Likewise, improving the accuracy of data in information systems is fast becoming a major goal as companies realize how much it affects their bottom line. Data profiling is a new technology that supports and enhances the accuracy of databases throughout major IT shops. Jack Olson explains data profiling and shows how it fits into the larger picture of data quality.* Provides an accessible, enjoyable introduction to the subject of data accuracy, peppered with real-world anecdotes. * Provides a framework for data profiling with a discussion of analytical tools appropriate for assessing data accuracy. * Is written by one of the original developers of data profiling technology. * Is a must-read for any data management staff, IT management staff, and CIOs of companies with data assets.

Handbook of EHealth Evaluation

Handbook of EHealth Evaluation
Author :
Publisher :
Total Pages : 487
Release :
ISBN-10 : 1550586017
ISBN-13 : 9781550586015
Rating : 4/5 (17 Downloads)

Synopsis Handbook of EHealth Evaluation by : Francis Yin Yee Lau

To order please visit https://onlineacademiccommunity.uvic.ca/press/books/ordering/

Data Quality

Data Quality
Author :
Publisher : Springer Science & Business Media
Total Pages : 276
Release :
ISBN-10 : 9783540331735
ISBN-13 : 3540331735
Rating : 4/5 (35 Downloads)

Synopsis Data Quality by : Carlo Batini

Poor data quality can seriously hinder or damage the efficiency and effectiveness of organizations and businesses. The growing awareness of such repercussions has led to major public initiatives like the "Data Quality Act" in the USA and the "European 2003/98" directive of the European Parliament. Batini and Scannapieco present a comprehensive and systematic introduction to the wide set of issues related to data quality. They start with a detailed description of different data quality dimensions, like accuracy, completeness, and consistency, and their importance in different types of data, like federated data, web data, or time-dependent data, and in different data categories classified according to frequency of change, like stable, long-term, and frequently changing data. The book's extensive description of techniques and methodologies from core data quality research as well as from related fields like data mining, probability theory, statistical data analysis, and machine learning gives an excellent overview of the current state of the art. The presentation is completed by a short description and critical comparison of tools and practical methodologies, which will help readers to resolve their own quality problems. This book is an ideal combination of the soundness of theoretical foundations and the applicability of practical approaches. It is ideally suited for everyone – researchers, students, or professionals – interested in a comprehensive overview of data quality issues. In addition, it will serve as the basis for an introductory course or for self-study on this topic.

Meeting the Challenges of Data Quality Management

Meeting the Challenges of Data Quality Management
Author :
Publisher : Academic Press
Total Pages : 353
Release :
ISBN-10 : 9780128217566
ISBN-13 : 0128217561
Rating : 4/5 (66 Downloads)

Synopsis Meeting the Challenges of Data Quality Management by : Laura Sebastian-Coleman

Meeting the Challenges of Data Quality Management outlines the foundational concepts of data quality management and its challenges. The book enables data management professionals to help their organizations get more value from data by addressing the five challenges of data quality management: the meaning challenge (recognizing how data represents reality), the process/quality challenge (creating high-quality data by design), the people challenge (building data literacy), the technical challenge (enabling organizational data to be accessed and used, as well as protected), and the accountability challenge (ensuring organizational leadership treats data as an asset). Organizations that fail to meet these challenges get less value from their data than organizations that address them directly. The book describes core data quality management capabilities and introduces new and experienced DQ practitioners to practical techniques for getting value from activities such as data profiling, DQ monitoring and DQ reporting. It extends these ideas to the management of data quality within big data environments. This book will appeal to data quality and data management professionals, especially those involved with data governance, across a wide range of industries, as well as academic and government organizations. Readership extends to people higher up the organizational ladder (chief data officers, data strategists, analytics leaders) and in different parts of the organization (finance professionals, operations managers, IT leaders) who want to leverage their data and their organizational capabilities (people, processes, technology) to drive value and gain competitive advantage. This will be a key reference for graduate students in computer science programs which normally have a limited focus on the data itself and where data quality management is an often-overlooked aspect of data management courses. - Describes the importance of high-quality data to organizations wanting to leverage their data and, more generally, to people living in today's digitally interconnected world - Explores the five challenges in relation to organizational data, including "Big Data," and proposes approaches to meeting them - Clarifies how to apply the core capabilities required for an effective data quality management program (data standards definition, data quality assessment, monitoring and reporting, issue management, and improvement) as both stand-alone processes and as integral components of projects and operations - Provides Data Quality practitioners with ways to communicate consistently with stakeholders

Executing Data Quality Projects

Executing Data Quality Projects
Author :
Publisher : Elsevier
Total Pages : 353
Release :
ISBN-10 : 9780080558394
ISBN-13 : 0080558399
Rating : 4/5 (94 Downloads)

Synopsis Executing Data Quality Projects by : Danette McGilvray

Information is currency. Recent studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. In this important and timely new book, Danette McGilvray presents her "Ten Steps approach to information quality, a proven method for both understanding and creating information quality in the enterprise. Her trademarked approach—in which she has trained Fortune 500 clients and hundreds of workshop attendees—applies to all types of data and to all types of organizations.* Includes numerous templates, detailed examples, and practical advice for executing every step of the "Ten Steps approach.* Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices.* A companion Web site includes links to numerous data quality resources, including many of the planning and information-gathering templates featured in the text, quick summaries of key ideas from the Ten Step methodology, and other tools and information available online.

Executing Data Quality Projects

Executing Data Quality Projects
Author :
Publisher : Academic Press
Total Pages : 378
Release :
ISBN-10 : 9780128180167
ISBN-13 : 0128180161
Rating : 4/5 (67 Downloads)

Synopsis Executing Data Quality Projects by : Danette McGilvray

Executing Data Quality Projects, Second Edition presents a structured yet flexible approach for creating, improving, sustaining and managing the quality of data and information within any organization. Studies show that data quality problems are costing businesses billions of dollars each year, with poor data linked to waste and inefficiency, damaged credibility among customers and suppliers, and an organizational inability to make sound decisions. Help is here! This book describes a proven Ten Step approach that combines a conceptual framework for understanding information quality with techniques, tools, and instructions for practically putting the approach to work – with the end result of high-quality trusted data and information, so critical to today's data-dependent organizations. The Ten Steps approach applies to all types of data and all types of organizations – for-profit in any industry, non-profit, government, education, healthcare, science, research, and medicine. This book includes numerous templates, detailed examples, and practical advice for executing every step. At the same time, readers are advised on how to select relevant steps and apply them in different ways to best address the many situations they will face. The layout allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, best practices, and warnings. The experience of actual clients and users of the Ten Steps provide real examples of outputs for the steps plus highlighted, sidebar case studies called Ten Steps in Action. This book uses projects as the vehicle for data quality work and the word broadly to include: 1) focused data quality improvement projects, such as improving data used in supply chain management, 2) data quality activities in other projects such as building new applications and migrating data from legacy systems, integrating data because of mergers and acquisitions, or untangling data due to organizational breakups, and 3) ad hoc use of data quality steps, techniques, or activities in the course of daily work. The Ten Steps approach can also be used to enrich an organization's standard SDLC (whether sequential or Agile) and it complements general improvement methodologies such as six sigma or lean. No two data quality projects are the same but the flexible nature of the Ten Steps means the methodology can be applied to all. The new Second Edition highlights topics such as artificial intelligence and machine learning, Internet of Things, security and privacy, analytics, legal and regulatory requirements, data science, big data, data lakes, and cloud computing, among others, to show their dependence on data and information and why data quality is more relevant and critical now than ever before. - Includes concrete instructions, numerous templates, and practical advice for executing every step of The Ten Steps approach - Contains real examples from around the world, gleaned from the author's consulting practice and from those who implemented based on her training courses and the earlier edition of the book - Allows for quick reference with an easy-to-use format highlighting key concepts and definitions, important checkpoints, communication activities, and best practices - A companion Web site includes links to numerous data quality resources, including many of the templates featured in the text, quick summaries of key ideas from the Ten Steps methodology, and other tools and information that are available online

Data and Information Quality

Data and Information Quality
Author :
Publisher : Springer
Total Pages : 520
Release :
ISBN-10 : 9783319241067
ISBN-13 : 3319241060
Rating : 4/5 (67 Downloads)

Synopsis Data and Information Quality by : Carlo Batini

This book provides a systematic and comparative description of the vast number of research issues related to the quality of data and information. It does so by delivering a sound, integrated and comprehensive overview of the state of the art and future development of data and information quality in databases and information systems. To this end, it presents an extensive description of the techniques that constitute the core of data and information quality research, including record linkage (also called object identification), data integration, error localization and correction, and examines the related techniques in a comprehensive and original methodological framework. Quality dimension definitions and adopted models are also analyzed in detail, and differences between the proposed solutions are highlighted and discussed. Furthermore, while systematically describing data and information quality as an autonomous research area, paradigms and influences deriving from other areas, such as probability theory, statistical data analysis, data mining, knowledge representation, and machine learning are also included. Last not least, the book also highlights very practical solutions, such as methodologies, benchmarks for the most effective techniques, case studies, and examples. The book has been written primarily for researchers in the fields of databases and information management or in natural sciences who are interested in investigating properties of data and information that have an impact on the quality of experiments, processes and on real life. The material presented is also sufficiently self-contained for masters or PhD-level courses, and it covers all the fundamentals and topics without the need for other textbooks. Data and information system administrators and practitioners, who deal with systems exposed to data-quality issues and as a result need a systematization of the field and practical methods in the area, will also benefit from the combination of concrete practical approaches with sound theoretical formalisms.