Data-Handling in Biomedical Science

Data-Handling in Biomedical Science
Author :
Publisher : Cambridge University Press
Total Pages :
Release :
ISBN-10 : 9781139488204
ISBN-13 : 1139488201
Rating : 4/5 (04 Downloads)

Synopsis Data-Handling in Biomedical Science by : Peter White

Packed with worked examples and problems, this book will help the reader improve their confidence and skill in data-handling. The mathematical methods needed for problem-solving are described in the first part of the book, with chapters covering topics such as indices, graphs and logarithms. The following eight chapters explore data-handling in different areas of microbiology and biochemistry including microbial growth, enzymes and radioactivity. Each chapter is fully illustrated with worked examples that provide a step-by-step guide to the solution of the most common problems. Over 30 exercises, ranging in difficulty and length, allow you to practise your skills and are accompanied by a full set of hints and solutions.

Data Handling and Analysis

Data Handling and Analysis
Author :
Publisher : Oxford University Press, USA
Total Pages : 205
Release :
ISBN-10 : 9780199667918
ISBN-13 : 0199667918
Rating : 4/5 (18 Downloads)

Synopsis Data Handling and Analysis by : Andrew D. Blann

Data Handling and Analysis provides a broad review of the quantitative skills needed to be an effective biomedical scientist.

Practical Data Analysis in Chemistry

Practical Data Analysis in Chemistry
Author :
Publisher : Elsevier
Total Pages : 341
Release :
ISBN-10 : 9780080548838
ISBN-13 : 0080548830
Rating : 4/5 (38 Downloads)

Synopsis Practical Data Analysis in Chemistry by : Marcel Maeder

The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spreadsheet, enabling the reader to study the programs, play with them and observe what happens. Suitable data are generated for each example in short routines, this ensuring a clear understanding of the data structure. Chapter 2 includes a brief introduction to matrix algebra and its implementation in Matlab and Excel while Chapter 3 covers the theory required for the modelling of chemical processes. This is followed by an introduction to linear and non-linear least-squares fitting, each demonstrated with typical applications. Finally Chapter 5 comprises a collection of several methods for model-free data analyses.* Includes a solid introduction to the simulation of equilibrium processes and the simulation of complex kinetic processes.* Provides examples of routines that are easily adapted to the processes investigated by the reader* 'Model-based' analysis (linear and non-linear regression) and 'model-free' analysis are covered

Efficient Data Handling for Massive Internet of Medical Things

Efficient Data Handling for Massive Internet of Medical Things
Author :
Publisher : Springer Nature
Total Pages : 398
Release :
ISBN-10 : 9783030666330
ISBN-13 : 3030666336
Rating : 4/5 (30 Downloads)

Synopsis Efficient Data Handling for Massive Internet of Medical Things by : Chinmay Chakraborty

This book focuses on recent advances and different research areas in multi-modal data fusion under healthcare informatics and seeks out theoretical, methodological, well-established and validated empirical work dealing with these different topics. This book brings together the latest industrial and academic progress, research, and development efforts within the rapidly maturing health informatics ecosystem. Contributions highlight emerging data fusion topics that support prospective healthcare applications. The book also presents various technologies and concerns regarding energy aware and secure sensors and how they can reduce energy consumption in health care applications. It also discusses the life cycle of sensor devices and protocols with the help of energy-aware design, production, and utilization, as well as the Internet of Things technologies such as tags, sensors, sensing networks, and Internet technologies. In a nutshell, this book gives a comprehensive overview of the state-of-the-art theories and techniques for massive data handling and access in medical data and smart health in IoT, and provides useful guidelines for the design of massive Internet of Medical Things.

Data Analytics in Biomedical Engineering and Healthcare

Data Analytics in Biomedical Engineering and Healthcare
Author :
Publisher : Academic Press
Total Pages : 298
Release :
ISBN-10 : 9780128193150
ISBN-13 : 0128193158
Rating : 4/5 (50 Downloads)

Synopsis Data Analytics in Biomedical Engineering and Healthcare by : Kun Chang Lee

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks

A Practical Guide to Biomedical Research

A Practical Guide to Biomedical Research
Author :
Publisher : Springer
Total Pages : 185
Release :
ISBN-10 : 9783319635828
ISBN-13 : 3319635824
Rating : 4/5 (28 Downloads)

Synopsis A Practical Guide to Biomedical Research by : Peter Agger

This book advises and supports novice researchers in taking their first steps into the world of scientific research. Through practical tips and tricks presented in a clear, concise and step-wise manner, the book describes the entire research process from idea to publication. It also gives the reader insight into the vast opportunities a research career can provide. The books target demographic is aspiring researchers within the biomedical professions, be it medical students, young doctors, nurses, engineers, physiotherapists etc. The book will help aspirational inexperienced researchers turn their intentions into actions, providing crucial guidance for successful entry into the field of biomedical research.

Data Handling and Analysis

Data Handling and Analysis
Author :
Publisher : Academic
Total Pages : 243
Release :
ISBN-10 : 9780198812210
ISBN-13 : 0198812213
Rating : 4/5 (10 Downloads)

Synopsis Data Handling and Analysis by : Andrew Blann

'Data Handling and Analysis' provides a broad review of the quantitative skills needed to be an effective biomedical scientist. Spanning the collection, presentation, and analysis of data - and drawing on relevant examples throughout - it is the ideal introduction to the subject for any student of biomedical science.

Fundamentals of Clinical Data Science

Fundamentals of Clinical Data Science
Author :
Publisher : Springer
Total Pages : 219
Release :
ISBN-10 : 9783319997131
ISBN-13 : 3319997130
Rating : 4/5 (31 Downloads)

Synopsis Fundamentals of Clinical Data Science by : Pieter Kubben

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.

Large-Scale Biomedical Science

Large-Scale Biomedical Science
Author :
Publisher : National Academies Press
Total Pages : 297
Release :
ISBN-10 : 9780309089128
ISBN-13 : 0309089123
Rating : 4/5 (28 Downloads)

Synopsis Large-Scale Biomedical Science by : National Research Council

The nature of biomedical research has been evolving in recent years. Technological advances that make it easier to study the vast complexity of biological systems have led to the initiation of projects with a larger scale and scope. In many cases, these large-scale analyses may be the most efficient and effective way to extract functional information from complex biological systems. Large-Scale Biomedical Science: Exploring Strategies for Research looks at the role of these new large-scale projects in the biomedical sciences. Though written by the National Academies' Cancer Policy Board, this book addresses implications of large-scale science extending far beyond cancer research. It also identifies obstacles to the implementation of these projects, and makes recommendations to improve the process. The ultimate goal of biomedical research is to advance knowledge and provide useful innovations to society. Determining the best and most efficient method for accomplishing that goal, however, is a continuing and evolving challenge. The recommendations presented in Large-Scale Biomedical Science are intended to facilitate a more open, inclusive, and accountable approach to large-scale biomedical research, which in turn will maximize progress in understanding and controlling human disease.

Sharing Clinical Trial Data

Sharing Clinical Trial Data
Author :
Publisher : National Academies Press
Total Pages : 236
Release :
ISBN-10 : 9780309316323
ISBN-13 : 0309316324
Rating : 4/5 (23 Downloads)

Synopsis Sharing Clinical Trial Data by : Institute of Medicine

Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.