Physics-based Machine Learning and Data-driven Reduced-order Modeling

Physics-based Machine Learning and Data-driven Reduced-order Modeling
Author :
Publisher :
Total Pages : 128
Release :
ISBN-10 : OCLC:1123218324
ISBN-13 :
Rating : 4/5 (24 Downloads)

Synopsis Physics-based Machine Learning and Data-driven Reduced-order Modeling by : Renee Copland Swischuk

This thesis considers the task of learning efficient low-dimensional models for dynamical systems. To be effective in an engineering setting, these models must be predictive -- that is, they must yield reliable predictions for conditions outside the data used to train them. These models must also be able to make predictions that enforce physical constraints. Achieving these tasks is particularly challenging for the case of systems governed by partial differential equations, where generating data (either from high-fidelity simulations or from physical experiments) is expensive. We address this challenge by developing learning approaches that embed physical constraints. We propose two physics-based approaches for generating low-dimensional predictive models. The first leverages the proper orthogonal decomposition (POD) to represent high-dimensional simulation data with a low-dimensional physics-based parameterization in combination with machine learning methods to construct a map from model inputs to POD coefficients. A comparison of four machine learning methods is provided through an application of predicting flow around an airfoil. This framework also provides a way to enforce a number of linear constraints by modifying the data with a particular solution. The results help to highlight the importance of including physics knowledge when learning from small amounts of data. We also apply a data-driven approach to learning the operators of low-dimensional models. This method provides an avenue for constructing low-dimensional models of systems where the operators of discretized governing equations are unknown or too complex, while also having the ability to enforce physical constraints. The methodology is applied to a two-dimensional combustion problem, where discretized model operators are unavailable. The results show that the method is able to accurately make predictions and enforce important physical constraints.

Data-Driven Fluid Mechanics

Data-Driven Fluid Mechanics
Author :
Publisher : Cambridge University Press
Total Pages : 470
Release :
ISBN-10 : 9781108902267
ISBN-13 : 110890226X
Rating : 4/5 (67 Downloads)

Synopsis Data-Driven Fluid Mechanics by : Miguel A. Mendez

Data-driven methods have become an essential part of the methodological portfolio of fluid dynamicists, motivating students and practitioners to gather practical knowledge from a diverse range of disciplines. These fields include computer science, statistics, optimization, signal processing, pattern recognition, nonlinear dynamics, and control. Fluid mechanics is historically a big data field and offers a fertile ground for developing and applying data-driven methods, while also providing valuable shortcuts, constraints, and interpretations based on its powerful connections to basic physics. Thus, hybrid approaches that leverage both methods based on data as well as fundamental principles are the focus of active and exciting research. Originating from a one-week lecture series course by the von Karman Institute for Fluid Dynamics, this book presents an overview and a pedagogical treatment of some of the data-driven and machine learning tools that are leading research advancements in model-order reduction, system identification, flow control, and data-driven turbulence closures.

Tensor Voting

Tensor Voting
Author :
Publisher : Springer Nature
Total Pages : 126
Release :
ISBN-10 : 9783031022425
ISBN-13 : 3031022424
Rating : 4/5 (25 Downloads)

Synopsis Tensor Voting by : Philippos Mordohai

This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.

Mathematical Methods and Models in Biomedicine

Mathematical Methods and Models in Biomedicine
Author :
Publisher : Springer Science & Business Media
Total Pages : 426
Release :
ISBN-10 : 9781461441786
ISBN-13 : 1461441781
Rating : 4/5 (86 Downloads)

Synopsis Mathematical Methods and Models in Biomedicine by : Urszula Ledzewicz

Mathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.

An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling
Author :
Publisher : John Wiley & Sons
Total Pages : 348
Release :
ISBN-10 : 9781118105740
ISBN-13 : 1118105745
Rating : 4/5 (40 Downloads)

Synopsis An Introduction to Mathematical Modeling by : J. Tinsley Oden

A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equations Electromagnetic Field Theory and Quantum Mechanics contains a brief account of electromagnetic wave theory and Maxwell's equations as well as an introductory account of quantum mechanics with related topics including ab initio methods and Spin and Pauli's principles Statistical Mechanics presents an introduction to statistical mechanics of systems in thermodynamic equilibrium as well as continuum mechanics, quantum mechanics, and molecular dynamics Each part of the book concludes with exercise sets that allow readers to test their understanding of the presented material. Key theorems and fundamental equations are highlighted throughout, and an extensive bibliography outlines resources for further study. Extensively class-tested to ensure an accessible presentation, An Introduction to Mathematical Modeling is an excellent book for courses on introductory mathematical modeling and statistical mechanics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in the areas of modeling and simulation, physics, and computational engineering.

Stochastic Chemical Reaction Systems in Biology

Stochastic Chemical Reaction Systems in Biology
Author :
Publisher : Springer Nature
Total Pages : 364
Release :
ISBN-10 : 9783030862527
ISBN-13 : 3030862526
Rating : 4/5 (27 Downloads)

Synopsis Stochastic Chemical Reaction Systems in Biology by : Hong Qian

This book provides an introduction to the analysis of stochastic dynamic models in biology and medicine. The main aim is to offer a coherent set of probabilistic techniques and mathematical tools which can be used for the simulation and analysis of various biological phenomena. These tools are illustrated on a number of examples. For each example, the biological background is described, and mathematical models are developed following a unified set of principles. These models are then analyzed and, finally, the biological implications of the mathematical results are interpreted. The biological topics covered include gene expression, biochemistry, cellular regulation, and cancer biology. The book will be accessible to graduate students who have a strong background in differential equations, the theory of nonlinear dynamical systems, Markovian stochastic processes, and both discrete and continuous state spaces, and who are familiar with the basic concepts of probability theory.

Differential Geometry with Applications to Mechanics and Physics

Differential Geometry with Applications to Mechanics and Physics
Author :
Publisher : CRC Press
Total Pages : 480
Release :
ISBN-10 : 0824703855
ISBN-13 : 9780824703851
Rating : 4/5 (55 Downloads)

Synopsis Differential Geometry with Applications to Mechanics and Physics by : Yves Talpaert

An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential forms; Lie derivative and Lie algebra; n-form integration on n-manifold; Riemann geometry; and more. It includes 133 solved exercises.

Nonequilibrium Statistical Mechanics

Nonequilibrium Statistical Mechanics
Author :
Publisher : Oxford University Press, USA
Total Pages : 233
Release :
ISBN-10 : 9780195140187
ISBN-13 : 0195140184
Rating : 4/5 (87 Downloads)

Synopsis Nonequilibrium Statistical Mechanics by : Robert Zwanzig

This is a presentation of the main ideas and methods of modern nonequilibrium statistical mechanics. It is the perfect introduction for anyone in chemistry or physics who needs an update or background in this time-dependent field. Topics covered include fluctuation-dissipation theorem; linear response theory; time correlation functions, and projection operators. Theoretical models are illustrated by real-world examples and numerous applications such as chemical reaction rates and spectral line shapes are covered. The mathematical treatments are detailed and easily understandable and the appendices include useful mathematical methods like the Laplace transforms, Gaussian random variables and phenomenological transport equations.