Data Driven Methods For Dynamic Systems
Download Data Driven Methods For Dynamic Systems full books in PDF, epub, and Kindle. Read online free Data Driven Methods For Dynamic Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Steven L. Brunton |
Publisher |
: Cambridge University Press |
Total Pages |
: 615 |
Release |
: 2022-05-05 |
ISBN-10 |
: 9781009098489 |
ISBN-13 |
: 1009098489 |
Rating |
: 4/5 (89 Downloads) |
Synopsis Data-Driven Science and Engineering by : Steven L. Brunton
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author |
: J. Nathan Kutz |
Publisher |
: SIAM |
Total Pages |
: 241 |
Release |
: 2016-11-23 |
ISBN-10 |
: 9781611974492 |
ISBN-13 |
: 1611974496 |
Rating |
: 4/5 (92 Downloads) |
Synopsis Dynamic Mode Decomposition by : J. Nathan Kutz
Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.
Author |
: Jose Nathan Kutz |
Publisher |
: |
Total Pages |
: 657 |
Release |
: 2013-08-08 |
ISBN-10 |
: 9780199660339 |
ISBN-13 |
: 0199660336 |
Rating |
: 4/5 (39 Downloads) |
Synopsis Data-Driven Modeling & Scientific Computation by : Jose Nathan Kutz
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.
Author |
: Jason Bramburger |
Publisher |
: SIAM |
Total Pages |
: 180 |
Release |
: 2024-11-05 |
ISBN-10 |
: 9781611978162 |
ISBN-13 |
: 1611978165 |
Rating |
: 4/5 (62 Downloads) |
Synopsis Data-Driven Methods for Dynamic Systems by : Jason Bramburger
As experimental data sets have grown and computational power has increased, new tools have been developed that have the power to model new systems and fundamentally alter how current systems are analyzed. This book brings together modern computational tools to provide an accurate understanding of dynamic data. The techniques build on pencil-and-paper mathematical techniques that go back decades and sometimes even centuries. The result is an introduction to state-of-the-art methods that complement, rather than replace, traditional analysis of time-dependent systems. Data-Driven Methods for Dynamic Systems provides readers with methods not found in other texts as well as novel ones developed just for this book; an example-driven presentation that provides background material and descriptions of methods without getting bogged down in technicalities; and examples that demonstrate the applicability of a method and introduce the features and drawbacks of their application. The online supplementary material includes a code repository that can be used to reproduce every example and that can be repurposed to fit a variety of applications not found in the book. This book is intended as an introduction to the field of data-driven methods for graduate students. It will also be of interest to researchers who want to familiarize themselves with the discipline. It can be used in courses on dynamical systems, differential equations, and data science.
Author |
: Marian Bubak |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 1376 |
Release |
: 2004-05-26 |
ISBN-10 |
: 9783540221166 |
ISBN-13 |
: 3540221166 |
Rating |
: 4/5 (66 Downloads) |
Synopsis Computational Science — ICCS 2004 by : Marian Bubak
The International Conference on Computational Science (ICCS 2004) held in Krak ́ ow, Poland, June 6–9, 2004, was a follow-up to the highly successful ICCS 2003 held at two locations, in Melbourne, Australia and St. Petersburg, Russia; ICCS 2002 in Amsterdam, The Netherlands; and ICCS 2001 in San Francisco, USA. As computational science is still evolving in its quest for subjects of inves- gation and e?cient methods, ICCS 2004 was devised as a forum for scientists from mathematics and computer science, as the basic computing disciplines and application areas, interested in advanced computational methods for physics, chemistry, life sciences, engineering, arts and humanities, as well as computer system vendors and software developers. The main objective of this conference was to discuss problems and solutions in all areas, to identify new issues, to shape future directions of research, and to help users apply various advanced computational techniques. The event harvested recent developments in com- tationalgridsandnextgenerationcomputingsystems,tools,advancednumerical methods, data-driven systems, and novel application ?elds, such as complex - stems, ?nance, econo-physics and population evolution.
Author |
: Frederica Darema |
Publisher |
: Springer Nature |
Total Pages |
: 937 |
Release |
: 2023-10-16 |
ISBN-10 |
: 9783031279867 |
ISBN-13 |
: 3031279867 |
Rating |
: 4/5 (67 Downloads) |
Synopsis Handbook of Dynamic Data Driven Applications Systems by : Frederica Darema
This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).
Author |
: Frederica Darema |
Publisher |
: Springer Nature |
Total Pages |
: 356 |
Release |
: 2020-11-02 |
ISBN-10 |
: 9783030617257 |
ISBN-13 |
: 3030617254 |
Rating |
: 4/5 (57 Downloads) |
Synopsis Dynamic Data Driven Applications Systems by : Frederica Darema
This book constitutes the refereed proceedings of the Third International Conference on Dynamic Data Driven Application Systems, DDDAS 2020, held in Boston, MA, USA, in October 2020. The 21 full papers and 14 short papers presented in this volume were carefully reviewed and selected from 40 submissions. They cover topics such as: digital twins; environment cognizant adaptive-planning systems; energy systems; materials systems; physics-based systems analysis; imaging methods and systems; and learning systems.
Author |
: Vicenc Puig |
Publisher |
: John Wiley & Sons |
Total Pages |
: 290 |
Release |
: 2021-12-01 |
ISBN-10 |
: 9781119882312 |
ISBN-13 |
: 1119882311 |
Rating |
: 4/5 (12 Downloads) |
Synopsis Diagnosis and Fault-tolerant Control 1 by : Vicenc Puig
This book presents recent advances in fault diagnosis strategies for complex dynamic systems. Its impetus derives from the need for an overview of the challenges of the fault diagnosis technique, especially for those demanding systems that require reliability, availability, maintainability and safety to ensure efficient operations. Moreover, the need for a high degree of tolerance with respect to possible faults represents a further key point, primarily for complex systems, as modeling and control are inherently challenging, and maintenance is both expensive and safety-critical. Diagnosis and Fault-tolerant Control 1 also presents and compares different diagnosis schemes using established case studies that are widely used in related literature. The main features of this book regard the analysis, design and implementation of proper solutions for the problems of fault diagnosis in safety critical systems. The design of the considered solutions involves robust data-driven, model-based approaches.
Author |
: Hazhir Rahmandad |
Publisher |
: MIT Press |
Total Pages |
: 443 |
Release |
: 2015-11-27 |
ISBN-10 |
: 9780262331432 |
ISBN-13 |
: 0262331438 |
Rating |
: 4/5 (32 Downloads) |
Synopsis Analytical Methods for Dynamic Modelers by : Hazhir Rahmandad
A user-friendly introduction to some of the most useful analytical tools for model building, estimation, and analysis, presenting key methods and examples. Simulation modeling is increasingly integrated into research and policy analysis of complex sociotechnical systems in a variety of domains. Model-based analysis and policy design inform a range of applications in fields from economics to engineering to health care. This book offers a hands-on introduction to key analytical methods for dynamic modeling. Bringing together tools and methodologies from fields as diverse as computational statistics, econometrics, and operations research in a single text, the book can be used for graduate-level courses and as a reference for dynamic modelers who want to expand their methodological toolbox. The focus is on quantitative techniques for use by dynamic modelers during model construction and analysis, and the material presented is accessible to readers with a background in college-level calculus and statistics. Each chapter describes a key method, presenting an introduction that emphasizes the basic intuition behind each method, tutorial style examples, references to key literature, and exercises. The chapter authors are all experts in the tools and methods they present. The book covers estimation of model parameters using quantitative data; understanding the links between model structure and its behavior; and decision support and optimization. An online appendix offers computer code for applications, models, and solutions to exercises. Contributors Wenyi An, Edward G. Anderson Jr., Yaman Barlas, Nishesh Chalise, Robert Eberlein, Hamed Ghoddusi, Winfried Grassmann, Peter S. Hovmand, Mohammad S. Jalali, Nitin Joglekar, David Keith, Juxin Liu, Erling Moxnes, Rogelio Oliva, Nathaniel D. Osgood, Hazhir Rahmandad, Raymond Spiteri, John Sterman, Jeroen Struben, Burcu Tan, Karen Yee, Gönenç Yücel
Author |
: Rolf Isermann |
Publisher |
: Springer |
Total Pages |
: 705 |
Release |
: 2011-04-08 |
ISBN-10 |
: 3540871551 |
ISBN-13 |
: 9783540871552 |
Rating |
: 4/5 (51 Downloads) |
Synopsis Identification of Dynamic Systems by : Rolf Isermann
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.