Data Complexity in Pattern Recognition

Data Complexity in Pattern Recognition
Author :
Publisher : Springer Science & Business Media
Total Pages : 309
Release :
ISBN-10 : 9781846281723
ISBN-13 : 1846281725
Rating : 4/5 (23 Downloads)

Synopsis Data Complexity in Pattern Recognition by : Mitra Basu

Automatic pattern recognition has uses in science and engineering, social sciences and finance. This book examines data complexity and its role in shaping theory and techniques across many disciplines, probing strengths and deficiencies of current classification techniques, and the algorithms that drive them. The book offers guidance on choosing pattern recognition classification techniques, and helps the reader set expectations for classification performance.

A Probabilistic Theory of Pattern Recognition

A Probabilistic Theory of Pattern Recognition
Author :
Publisher : Springer Science & Business Media
Total Pages : 631
Release :
ISBN-10 : 9781461207115
ISBN-13 : 1461207118
Rating : 4/5 (15 Downloads)

Synopsis A Probabilistic Theory of Pattern Recognition by : Luc Devroye

A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 1493938436
ISBN-13 : 9781493938438
Rating : 4/5 (36 Downloads)

Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Intelligent Systems

Intelligent Systems
Author :
Publisher : Springer Nature
Total Pages : 697
Release :
ISBN-10 : 9783030613808
ISBN-13 : 3030613801
Rating : 4/5 (08 Downloads)

Synopsis Intelligent Systems by : Ricardo Cerri

The two-volume set LNAI 12319 and 12320 constitutes the proceedings of the 9th Brazilian Conference on Intelligent Systems, BRACIS 2020, held in Rio Grande, Brazil, in October 2020. The total of 90 papers presented in these two volumes was carefully reviewed and selected from 228 submissions. The contributions are organized in the following topical section: Part I: Evolutionary computation, metaheuristics, constrains and search, combinatorial and numerical optimization; neural networks, deep learning and computer vision; and text mining and natural language processing. Part II: Agent and multi-agent systems, planning and reinforcement learning; knowledge representation, logic and fuzzy systems; machine learning and data mining; and multidisciplinary artificial and computational intelligence and applications. Due to the Corona pandemic BRACIS 2020 was held as a virtual event.

Pattern Recognition and Image Analysis

Pattern Recognition and Image Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 742
Release :
ISBN-10 : 9783540261544
ISBN-13 : 3540261540
Rating : 4/5 (44 Downloads)

Synopsis Pattern Recognition and Image Analysis by : Jorge S. Marques

The two-volume set LNCS 3522 and 3523 constitutes the refereed proceedings of the Second Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2005, held in Estoril, Portugal in June 2005. The 170 revised full papers presented were carefully reviewed and selected from 292 submissions. The papers are organized in topical sections on computer vision, shape and matching, image and video processing, image and video coding, face recognition, human activity analysis, surveillance, robotics, hardware architectures, statistical pattern recognition, syntactical pattern recognition, image analysis, document analysis, bioinformatics, medical imaging, biometrics, speech recognition, natural language analysis, and applications.

Progress in Pattern Recognition, Image Analysis and Applications

Progress in Pattern Recognition, Image Analysis and Applications
Author :
Publisher : Springer Science & Business Media
Total Pages : 1114
Release :
ISBN-10 : 9783540298502
ISBN-13 : 3540298509
Rating : 4/5 (02 Downloads)

Synopsis Progress in Pattern Recognition, Image Analysis and Applications by : Alberto Sanfeliu

This book constitutes the refereed proceedings of the 10th Iberoamerican Congress on Pattern Recognition, CIARP 2005, held in Havana, Cuba in November 2005. The 107 revised full papers presented together with 3 keynote articles were carefully reviewed and selected from more than 200 submissions. The papers cover ongoing research and mathematical methods for pattern recognition, image analysis, and applications in such diverse areas as computer vision, robotics, industry, health, entertainment, space exploration, telecommunications, data mining, document analysis, and natural language processing and recognition.

Pattern Discrimination

Pattern Discrimination
Author :
Publisher : U of Minnesota Press
Total Pages : 155
Release :
ISBN-10 : 9781452959276
ISBN-13 : 1452959277
Rating : 4/5 (76 Downloads)

Synopsis Pattern Discrimination by : Clemens Apprich

How do “human” prejudices reemerge in algorithmic cultures allegedly devised to be blind to them? How do “human” prejudices reemerge in algorithmic cultures allegedly devised to be blind to them? To answer this question, this book investigates a fundamental axiom in computer science: pattern discrimination. By imposing identity on input data, in order to filter—that is, to discriminate—signals from noise, patterns become a highly political issue. Algorithmic identity politics reinstate old forms of social segregation, such as class, race, and gender, through defaults and paradigmatic assumptions about the homophilic nature of connection. Instead of providing a more “objective” basis of decision making, machine-learning algorithms deepen bias and further inscribe inequality into media. Yet pattern discrimination is an essential part of human—and nonhuman—cognition. Bringing together media thinkers and artists from the United States and Germany, this volume asks the urgent questions: How can we discriminate without being discriminatory? How can we filter information out of data without reinserting racist, sexist, and classist beliefs? How can we queer homophilic tendencies within digital cultures?

Advances in Artificial Intelligence

Advances in Artificial Intelligence
Author :
Publisher : Springer
Total Pages : 512
Release :
ISBN-10 : 9783319446363
ISBN-13 : 3319446363
Rating : 4/5 (63 Downloads)

Synopsis Advances in Artificial Intelligence by : Oscar Luaces

This book constitutes the refereed proceedings of the 16th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2016, held in Salamanca, Spain, in September 2016. The 47 revised full papers presented were carefully selected from 166 submissions. Apart from the presentation of technical full papers, the scientific program of CAEPIA 2016 included an App contest, a Doctoral Consortium and, as a follow-up to the success achieved in previously CAEPIA editions, a special session on outstanding recent papers (Key Works) already published in renowned journals or forums.

Pattern Recognition

Pattern Recognition
Author :
Publisher : BoD – Books on Demand
Total Pages : 582
Release :
ISBN-10 : 9789533070148
ISBN-13 : 9533070145
Rating : 4/5 (48 Downloads)

Synopsis Pattern Recognition by : Peng-Yeng Yin

For more than 40 years, pattern recognition approaches are continuingly improving and have been used in an increasing number of areas with great success. This book discloses recent advances and new ideas in approaches and applications for pattern recognition. The 30 chapters selected in this book cover the major topics in pattern recognition. These chapters propose state-of-the-art approaches and cutting-edge research results. I could not thank enough to the contributions of the authors. This book would not have been possible without their support.

Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition
Author :
Publisher : Oxford University Press
Total Pages : 501
Release :
ISBN-10 : 9780198538646
ISBN-13 : 0198538642
Rating : 4/5 (46 Downloads)

Synopsis Neural Networks for Pattern Recognition by : Christopher M. Bishop

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.