Data Clustering
Download Data Clustering full books in PDF, epub, and Kindle. Read online free Data Clustering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads.
Author |
: Charu C. Aggarwal |
Publisher |
: CRC Press |
Total Pages |
: 648 |
Release |
: 2013-08-21 |
ISBN-10 |
: 9781466558229 |
ISBN-13 |
: 1466558229 |
Rating |
: 4/5 (29 Downloads) |
Synopsis Data Clustering by : Charu C. Aggarwal
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and nonnegative matrix factorization Domains, covering methods used for different domains of data, such as categorical data, text data, multimedia data, graph data, biological data, stream data, uncertain data, time series clustering, high-dimensional clustering, and big data Variations and Insights, discussing important variations of the clustering process, such as semisupervised clustering, interactive clustering, multiview clustering, cluster ensembles, and cluster validation In this book, top researchers from around the world explore the characteristics of clustering problems in a variety of application areas. They also explain how to glean detailed insight from the clustering process—including how to verify the quality of the underlying clusters—through supervision, human intervention, or the automated generation of alternative clusters.
Author |
: Guojun Gan |
Publisher |
: SIAM |
Total Pages |
: 430 |
Release |
: 2020-11-10 |
ISBN-10 |
: 9781611976335 |
ISBN-13 |
: 1611976332 |
Rating |
: 4/5 (35 Downloads) |
Synopsis Data Clustering: Theory, Algorithms, and Applications, Second Edition by : Guojun Gan
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Author |
: Charles Bouveyron |
Publisher |
: Cambridge University Press |
Total Pages |
: 447 |
Release |
: 2019-07-25 |
ISBN-10 |
: 9781108640596 |
ISBN-13 |
: 1108640591 |
Rating |
: 4/5 (96 Downloads) |
Synopsis Model-Based Clustering and Classification for Data Science by : Charles Bouveyron
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Author |
: Oded Maimon |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 1378 |
Release |
: 2006-05-28 |
ISBN-10 |
: 9780387254654 |
ISBN-13 |
: 038725465X |
Rating |
: 4/5 (54 Downloads) |
Synopsis Data Mining and Knowledge Discovery Handbook by : Oded Maimon
Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management.
Author |
: Jacob Kogan |
Publisher |
: Taylor & Francis |
Total Pages |
: 296 |
Release |
: 2006-02-10 |
ISBN-10 |
: 354028348X |
ISBN-13 |
: 9783540283485 |
Rating |
: 4/5 (8X Downloads) |
Synopsis Grouping Multidimensional Data by : Jacob Kogan
Publisher description
Author |
: Krzystof Jajuga |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 468 |
Release |
: 2012-12-06 |
ISBN-10 |
: 9783642561818 |
ISBN-13 |
: 3642561810 |
Rating |
: 4/5 (18 Downloads) |
Synopsis Classification, Clustering, and Data Analysis by : Krzystof Jajuga
The book presents a long list of useful methods for classification, clustering and data analysis. By combining theoretical aspects with practical problems, it is designed for researchers as well as for applied statisticians and will support the fast transfer of new methodological advances to a wide range of applications.
Author |
: Rui Xu |
Publisher |
: John Wiley & Sons |
Total Pages |
: 400 |
Release |
: 2008-11-03 |
ISBN-10 |
: 9780470382783 |
ISBN-13 |
: 0470382783 |
Rating |
: 4/5 (83 Downloads) |
Synopsis Clustering by : Rui Xu
This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.
Author |
: Boris Mirkin |
Publisher |
: CRC Press |
Total Pages |
: 366 |
Release |
: 2016-04-19 |
ISBN-10 |
: 9781439838426 |
ISBN-13 |
: 1439838429 |
Rating |
: 4/5 (26 Downloads) |
Synopsis Clustering by : Boris Mirkin
Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods-K-Means for partitioning and Ward's method for hierarchical clustering-have lacked the theoretical underpinning req
Author |
: Leonard Kaufman |
Publisher |
: Wiley-Interscience |
Total Pages |
: 376 |
Release |
: 1990-03-22 |
ISBN-10 |
: UCSD:31822005118112 |
ISBN-13 |
: |
Rating |
: 4/5 (12 Downloads) |
Synopsis Finding Groups in Data by : Leonard Kaufman
Partitioning around medoids (Program PAM). Clustering large applications (Program CLARA). Fuzzy analysis (Program FANNY). Agglomerative Nesting (Program AGNES). Divisive analysis (Program DIANA). Monothetic analysis (Program MONA). Appendix.
Author |
: Junjie Wu |
Publisher |
: Springer Science & Business Media |
Total Pages |
: 187 |
Release |
: 2012-07-09 |
ISBN-10 |
: 9783642298073 |
ISBN-13 |
: 3642298079 |
Rating |
: 4/5 (73 Downloads) |
Synopsis Advances in K-means Clustering by : Junjie Wu
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.